The impact of synthetic musk compounds in biofilms from drinking water bacteria

Detalhes bibliográficos
Autor(a) principal: Inês Gomes
Data de Publicação: 2022
Outros Autores: Manuel Simões, Vitória Arruda
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/153009
Resumo: Musk fragrances have been detected in drinking water (DW) at trace concentrations. However, their impact on the microbial quality of DW has been disregarded. This work provides a pioneer evaluation of the effects of two synthetic musks contaminants, tonalide (AHTN) and galaxolide (HHCB), in microbial biofilms formed on two different surfaces, polyvinyl chloride (PVC) and stainless steel AISI 316 (SS316). Three bacterial species isolated from DW (Acinetobacter calcoaceticus, Burkholderia cepacia and Stenotrophomonas maltophilia), were used to develop 7-day-old single and mixed species biofilms. The impact of musks was assessed directly on biofilms but also on the bacteria motility, biofilm formation ability and biofilm susceptibility to chlorination. AHTN musk caused the most remarkable effects by increasing the cellular density and viability of mixed biofilms, and the extracellular polysaccharides content of biofilms on SS316. Most of the alterations caused by the direct exposure of biofilms to musks were observed when SS316 was used as an adhesion surface. In contrast, the ability to form biofilms and their susceptibility to chlorine were more affected for bacteria from HHCB-exposed biofilms on PVC. The overall results demonstrate that the presence of musks at residual concentrations influences DW bacterial dynamics, with the potential to impact the DW quality and safety. The type of plumbing material may further impact the effects of musks.
id RCAP_2fcad61a9544c5cd5846425050e2d4ab
oai_identifier_str oai:repositorio-aberto.up.pt:10216/153009
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The impact of synthetic musk compounds in biofilms from drinking water bacteriaMusk fragrances have been detected in drinking water (DW) at trace concentrations. However, their impact on the microbial quality of DW has been disregarded. This work provides a pioneer evaluation of the effects of two synthetic musks contaminants, tonalide (AHTN) and galaxolide (HHCB), in microbial biofilms formed on two different surfaces, polyvinyl chloride (PVC) and stainless steel AISI 316 (SS316). Three bacterial species isolated from DW (Acinetobacter calcoaceticus, Burkholderia cepacia and Stenotrophomonas maltophilia), were used to develop 7-day-old single and mixed species biofilms. The impact of musks was assessed directly on biofilms but also on the bacteria motility, biofilm formation ability and biofilm susceptibility to chlorination. AHTN musk caused the most remarkable effects by increasing the cellular density and viability of mixed biofilms, and the extracellular polysaccharides content of biofilms on SS316. Most of the alterations caused by the direct exposure of biofilms to musks were observed when SS316 was used as an adhesion surface. In contrast, the ability to form biofilms and their susceptibility to chlorine were more affected for bacteria from HHCB-exposed biofilms on PVC. The overall results demonstrate that the presence of musks at residual concentrations influences DW bacterial dynamics, with the potential to impact the DW quality and safety. The type of plumbing material may further impact the effects of musks.2022-05-202022-05-20T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/153009por0304-389410.1016/j.jhazmat.2022.129185Inês GomesManuel SimõesVitória Arrudainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T14:54:20Zoai:repositorio-aberto.up.pt:10216/153009Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:11:17.660092Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The impact of synthetic musk compounds in biofilms from drinking water bacteria
title The impact of synthetic musk compounds in biofilms from drinking water bacteria
spellingShingle The impact of synthetic musk compounds in biofilms from drinking water bacteria
Inês Gomes
title_short The impact of synthetic musk compounds in biofilms from drinking water bacteria
title_full The impact of synthetic musk compounds in biofilms from drinking water bacteria
title_fullStr The impact of synthetic musk compounds in biofilms from drinking water bacteria
title_full_unstemmed The impact of synthetic musk compounds in biofilms from drinking water bacteria
title_sort The impact of synthetic musk compounds in biofilms from drinking water bacteria
author Inês Gomes
author_facet Inês Gomes
Manuel Simões
Vitória Arruda
author_role author
author2 Manuel Simões
Vitória Arruda
author2_role author
author
dc.contributor.author.fl_str_mv Inês Gomes
Manuel Simões
Vitória Arruda
description Musk fragrances have been detected in drinking water (DW) at trace concentrations. However, their impact on the microbial quality of DW has been disregarded. This work provides a pioneer evaluation of the effects of two synthetic musks contaminants, tonalide (AHTN) and galaxolide (HHCB), in microbial biofilms formed on two different surfaces, polyvinyl chloride (PVC) and stainless steel AISI 316 (SS316). Three bacterial species isolated from DW (Acinetobacter calcoaceticus, Burkholderia cepacia and Stenotrophomonas maltophilia), were used to develop 7-day-old single and mixed species biofilms. The impact of musks was assessed directly on biofilms but also on the bacteria motility, biofilm formation ability and biofilm susceptibility to chlorination. AHTN musk caused the most remarkable effects by increasing the cellular density and viability of mixed biofilms, and the extracellular polysaccharides content of biofilms on SS316. Most of the alterations caused by the direct exposure of biofilms to musks were observed when SS316 was used as an adhesion surface. In contrast, the ability to form biofilms and their susceptibility to chlorine were more affected for bacteria from HHCB-exposed biofilms on PVC. The overall results demonstrate that the presence of musks at residual concentrations influences DW bacterial dynamics, with the potential to impact the DW quality and safety. The type of plumbing material may further impact the effects of musks.
publishDate 2022
dc.date.none.fl_str_mv 2022-05-20
2022-05-20T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/153009
url https://hdl.handle.net/10216/153009
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv 0304-3894
10.1016/j.jhazmat.2022.129185
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136035949510656