Swarm intelligence for optimizing the parameters of multiple sequence aligners
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/151420 |
Resumo: | Rubio-Largo, Á., Vanneschi, L., Castelli, M., & Vega-Rodríguez, M. A. (2018). Swarm intelligence for optimizing the parameters of multiple sequence aligners. Swarm and Evolutionary Computation. DOI: 10.1016/j.swevo.2018.04.003 |
id |
RCAP_301babc38a8854a45cb360f47706db1d |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/151420 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Swarm intelligence for optimizing the parameters of multiple sequence alignersCharacteristics-based frameworkEvolutionary algorithmsMultiple sequence alignmentSwarm intelligenceComputer Science(all)Mathematics(all)SDG 3 - Good Health and Well-beingRubio-Largo, Á., Vanneschi, L., Castelli, M., & Vega-Rodríguez, M. A. (2018). Swarm intelligence for optimizing the parameters of multiple sequence aligners. Swarm and Evolutionary Computation. DOI: 10.1016/j.swevo.2018.04.003Different aligner heuristics can be found in the literature to solve the Multiple Sequence Alignment problem. These aligners rely on the parameter configuration proposed by their authors (also known as default parameter configuration), that tried to obtain good results (alignments with high accuracy and conservation) for any input set of unaligned sequences. However, the default parameter configuration is not always the best parameter configuration for every input set; namely, depending on the biological characteristics of the input set, one may be able to find a better parameter configuration that outputs a more accurate and conservative alignment. This work's main contributions include: to study the input set's biological characteristics and to then apply the best parameter configuration found depending on those characteristics. The framework uses a pre-computed file to take the best parameter configuration found for a dataset with similar biological characteristics. In order to create this file, we use a Particle Swarm Optimization (PSO) algorithm, that is, an algorithm based on swarm intelligence. To test the effectiveness of the characteristic-based framework, we employ five well-known aligners: Clustal W, DIALIGN-TX, Kalign2, MAFFT, and MUSCLE. The results of these aligners see clear improvements when using the proposed characteristic-based framework.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNRubio-Largo, ÁlvaroVanneschi, LeonardoCastelli, MauroVega-Rodríguez, Miguel A.2024-01-27T01:32:02Z2018-10-012018-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/151420eng2210-6502PURE: 4168066https://doi.org/10.1016/j.swevo.2018.04.003info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:33:52Zoai:run.unl.pt:10362/151420Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:54:35.158964Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Swarm intelligence for optimizing the parameters of multiple sequence aligners |
title |
Swarm intelligence for optimizing the parameters of multiple sequence aligners |
spellingShingle |
Swarm intelligence for optimizing the parameters of multiple sequence aligners Rubio-Largo, Álvaro Characteristics-based framework Evolutionary algorithms Multiple sequence alignment Swarm intelligence Computer Science(all) Mathematics(all) SDG 3 - Good Health and Well-being |
title_short |
Swarm intelligence for optimizing the parameters of multiple sequence aligners |
title_full |
Swarm intelligence for optimizing the parameters of multiple sequence aligners |
title_fullStr |
Swarm intelligence for optimizing the parameters of multiple sequence aligners |
title_full_unstemmed |
Swarm intelligence for optimizing the parameters of multiple sequence aligners |
title_sort |
Swarm intelligence for optimizing the parameters of multiple sequence aligners |
author |
Rubio-Largo, Álvaro |
author_facet |
Rubio-Largo, Álvaro Vanneschi, Leonardo Castelli, Mauro Vega-Rodríguez, Miguel A. |
author_role |
author |
author2 |
Vanneschi, Leonardo Castelli, Mauro Vega-Rodríguez, Miguel A. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Rubio-Largo, Álvaro Vanneschi, Leonardo Castelli, Mauro Vega-Rodríguez, Miguel A. |
dc.subject.por.fl_str_mv |
Characteristics-based framework Evolutionary algorithms Multiple sequence alignment Swarm intelligence Computer Science(all) Mathematics(all) SDG 3 - Good Health and Well-being |
topic |
Characteristics-based framework Evolutionary algorithms Multiple sequence alignment Swarm intelligence Computer Science(all) Mathematics(all) SDG 3 - Good Health and Well-being |
description |
Rubio-Largo, Á., Vanneschi, L., Castelli, M., & Vega-Rodríguez, M. A. (2018). Swarm intelligence for optimizing the parameters of multiple sequence aligners. Swarm and Evolutionary Computation. DOI: 10.1016/j.swevo.2018.04.003 |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10-01 2018-10-01T00:00:00Z 2024-01-27T01:32:02Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/151420 |
url |
http://hdl.handle.net/10362/151420 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2210-6502 PURE: 4168066 https://doi.org/10.1016/j.swevo.2018.04.003 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138134588391424 |