The time aggregation of sharpe ratio

Detalhes bibliográficos
Autor(a) principal: Pimentel, Sara Machado Ferreira
Data de Publicação: 2008
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/692
Resumo: More than four decades have passed and the Sharpe Ratio (SR) continues to be one of the most popular portfolio risk adjusted performance measures. We comment on Lo’s (2002) results for the time aggregation of SR considering a different approach to deal with the conditional heteroskedasticity of returns. Based on a theorem proposed by Diebold (1986, 1988) we verify, for the series of financial returns with no serial correlation, that the most common method for time aggregation, the product of the higher-frequency SR by the square root of the number of periods contained in the lower-frequency holding period, can still be used in the presence of heteroskedasticity, when higher-frequency returns have been generated by a GARCH process and aggregated returns converge to the normal distribution. In an empirical application based on 65 investment funds, the convergence to normality is illustrated, showing that in 70% of the cases the convergence is held at least when daily returns are aggregated into annual frequency. Moreover, we show that serial correlation tends to disappear when the number of periods in the aggregation process tends to infinity and the most common method of SR time aggregation should not be disregarded as a valid method. The results are in accordance with Lo (2002) who roughly states that when serial correlation is not significant, the time aggregation of SR should be performed with the most common method of time aggregation.
id RCAP_304d824307b8e2ad9b233dd898880136
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/692
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The time aggregation of sharpe ratioSharpe ratiotime aggregationGARCH modelTheorem of DieboldÍndice de SharpeAgregação temporalModelos GARCHTeorema de DieboldMore than four decades have passed and the Sharpe Ratio (SR) continues to be one of the most popular portfolio risk adjusted performance measures. We comment on Lo’s (2002) results for the time aggregation of SR considering a different approach to deal with the conditional heteroskedasticity of returns. Based on a theorem proposed by Diebold (1986, 1988) we verify, for the series of financial returns with no serial correlation, that the most common method for time aggregation, the product of the higher-frequency SR by the square root of the number of periods contained in the lower-frequency holding period, can still be used in the presence of heteroskedasticity, when higher-frequency returns have been generated by a GARCH process and aggregated returns converge to the normal distribution. In an empirical application based on 65 investment funds, the convergence to normality is illustrated, showing that in 70% of the cases the convergence is held at least when daily returns are aggregated into annual frequency. Moreover, we show that serial correlation tends to disappear when the number of periods in the aggregation process tends to infinity and the most common method of SR time aggregation should not be disregarded as a valid method. The results are in accordance with Lo (2002) who roughly states that when serial correlation is not significant, the time aggregation of SR should be performed with the most common method of time aggregation.Mais de quatro décadas passaram e o Índice de Sharpe (IS) continua a ser uma das medidas mais populares para avaliar a relação entre o risco e a rendibilidade de carteiras de títulos. Neste artigo analisamos a distribuição não condicional do IS já deduzida por Lo (2002) e consideramos uma abordagem alternativa para lidar com a heteroscedasticidade condicional que vulgarmente caracteriza as taxas de rendibilidade dos activos financeiros. Com base num teorema proposto por Diebold (1986, 1988), e assumindo a inexistência de autocorrelação, verificamos que o método mais comum de agregação temporal, que consiste no produto entre o valor do índice resultante da frequência mais elevada (dados diários, por exemplo) e a raiz quadrada do número de períodos considerados na agregação, é ainda adequado na presença de heteroscedasticidade quando as taxas de rendibilidade de maior frequência seguem um processo GARCH e a distribuição das taxas de rendibilidade agregada convergem para a distribuição normal. Numa aplicação empírica, composta por 65 fundos de investimento, ilustramos a convergência para a normalidade, demonstrando que, em pelo menos 70% dos casos, essa convergência ocorre quando se considera a agregação anual a partir de dados diários. Adicionalmente, demonstramos que a autocorrelação tende a desaparecer quando o período de agregação tende para infinito e que, nesses casos, o método mais comum de agregação temporal do IS não deve ser desconsiderado como um método válido de agregação temporal. Os resultados estão de acordo com Lo (2002) que, resumidamente, defende a utilização do método mais comum de agregação temporal do IS quando a autocorrelação das séries de taxas de rendibilidade não é significativa.2008-09-09T15:48:48Z2008-01-01T00:00:00Z20082008-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/692engPimentel, Sara Machado Ferreirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:56:12Zoai:repositorio.iscte-iul.pt:10071/692Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:28:46.441434Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The time aggregation of sharpe ratio
title The time aggregation of sharpe ratio
spellingShingle The time aggregation of sharpe ratio
Pimentel, Sara Machado Ferreira
Sharpe ratio
time aggregation
GARCH model
Theorem of Diebold
Índice de Sharpe
Agregação temporal
Modelos GARCH
Teorema de Diebold
title_short The time aggregation of sharpe ratio
title_full The time aggregation of sharpe ratio
title_fullStr The time aggregation of sharpe ratio
title_full_unstemmed The time aggregation of sharpe ratio
title_sort The time aggregation of sharpe ratio
author Pimentel, Sara Machado Ferreira
author_facet Pimentel, Sara Machado Ferreira
author_role author
dc.contributor.author.fl_str_mv Pimentel, Sara Machado Ferreira
dc.subject.por.fl_str_mv Sharpe ratio
time aggregation
GARCH model
Theorem of Diebold
Índice de Sharpe
Agregação temporal
Modelos GARCH
Teorema de Diebold
topic Sharpe ratio
time aggregation
GARCH model
Theorem of Diebold
Índice de Sharpe
Agregação temporal
Modelos GARCH
Teorema de Diebold
description More than four decades have passed and the Sharpe Ratio (SR) continues to be one of the most popular portfolio risk adjusted performance measures. We comment on Lo’s (2002) results for the time aggregation of SR considering a different approach to deal with the conditional heteroskedasticity of returns. Based on a theorem proposed by Diebold (1986, 1988) we verify, for the series of financial returns with no serial correlation, that the most common method for time aggregation, the product of the higher-frequency SR by the square root of the number of periods contained in the lower-frequency holding period, can still be used in the presence of heteroskedasticity, when higher-frequency returns have been generated by a GARCH process and aggregated returns converge to the normal distribution. In an empirical application based on 65 investment funds, the convergence to normality is illustrated, showing that in 70% of the cases the convergence is held at least when daily returns are aggregated into annual frequency. Moreover, we show that serial correlation tends to disappear when the number of periods in the aggregation process tends to infinity and the most common method of SR time aggregation should not be disregarded as a valid method. The results are in accordance with Lo (2002) who roughly states that when serial correlation is not significant, the time aggregation of SR should be performed with the most common method of time aggregation.
publishDate 2008
dc.date.none.fl_str_mv 2008-09-09T15:48:48Z
2008-01-01T00:00:00Z
2008
2008-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/692
url http://hdl.handle.net/10071/692
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/octet-stream
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134850434727936