The time aggregation of sharpe ratio
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/692 |
Resumo: | More than four decades have passed and the Sharpe Ratio (SR) continues to be one of the most popular portfolio risk adjusted performance measures. We comment on Lo’s (2002) results for the time aggregation of SR considering a different approach to deal with the conditional heteroskedasticity of returns. Based on a theorem proposed by Diebold (1986, 1988) we verify, for the series of financial returns with no serial correlation, that the most common method for time aggregation, the product of the higher-frequency SR by the square root of the number of periods contained in the lower-frequency holding period, can still be used in the presence of heteroskedasticity, when higher-frequency returns have been generated by a GARCH process and aggregated returns converge to the normal distribution. In an empirical application based on 65 investment funds, the convergence to normality is illustrated, showing that in 70% of the cases the convergence is held at least when daily returns are aggregated into annual frequency. Moreover, we show that serial correlation tends to disappear when the number of periods in the aggregation process tends to infinity and the most common method of SR time aggregation should not be disregarded as a valid method. The results are in accordance with Lo (2002) who roughly states that when serial correlation is not significant, the time aggregation of SR should be performed with the most common method of time aggregation. |
id |
RCAP_304d824307b8e2ad9b233dd898880136 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/692 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
The time aggregation of sharpe ratioSharpe ratiotime aggregationGARCH modelTheorem of DieboldÍndice de SharpeAgregação temporalModelos GARCHTeorema de DieboldMore than four decades have passed and the Sharpe Ratio (SR) continues to be one of the most popular portfolio risk adjusted performance measures. We comment on Lo’s (2002) results for the time aggregation of SR considering a different approach to deal with the conditional heteroskedasticity of returns. Based on a theorem proposed by Diebold (1986, 1988) we verify, for the series of financial returns with no serial correlation, that the most common method for time aggregation, the product of the higher-frequency SR by the square root of the number of periods contained in the lower-frequency holding period, can still be used in the presence of heteroskedasticity, when higher-frequency returns have been generated by a GARCH process and aggregated returns converge to the normal distribution. In an empirical application based on 65 investment funds, the convergence to normality is illustrated, showing that in 70% of the cases the convergence is held at least when daily returns are aggregated into annual frequency. Moreover, we show that serial correlation tends to disappear when the number of periods in the aggregation process tends to infinity and the most common method of SR time aggregation should not be disregarded as a valid method. The results are in accordance with Lo (2002) who roughly states that when serial correlation is not significant, the time aggregation of SR should be performed with the most common method of time aggregation.Mais de quatro décadas passaram e o Índice de Sharpe (IS) continua a ser uma das medidas mais populares para avaliar a relação entre o risco e a rendibilidade de carteiras de títulos. Neste artigo analisamos a distribuição não condicional do IS já deduzida por Lo (2002) e consideramos uma abordagem alternativa para lidar com a heteroscedasticidade condicional que vulgarmente caracteriza as taxas de rendibilidade dos activos financeiros. Com base num teorema proposto por Diebold (1986, 1988), e assumindo a inexistência de autocorrelação, verificamos que o método mais comum de agregação temporal, que consiste no produto entre o valor do índice resultante da frequência mais elevada (dados diários, por exemplo) e a raiz quadrada do número de períodos considerados na agregação, é ainda adequado na presença de heteroscedasticidade quando as taxas de rendibilidade de maior frequência seguem um processo GARCH e a distribuição das taxas de rendibilidade agregada convergem para a distribuição normal. Numa aplicação empírica, composta por 65 fundos de investimento, ilustramos a convergência para a normalidade, demonstrando que, em pelo menos 70% dos casos, essa convergência ocorre quando se considera a agregação anual a partir de dados diários. Adicionalmente, demonstramos que a autocorrelação tende a desaparecer quando o período de agregação tende para infinito e que, nesses casos, o método mais comum de agregação temporal do IS não deve ser desconsiderado como um método válido de agregação temporal. Os resultados estão de acordo com Lo (2002) que, resumidamente, defende a utilização do método mais comum de agregação temporal do IS quando a autocorrelação das séries de taxas de rendibilidade não é significativa.2008-09-09T15:48:48Z2008-01-01T00:00:00Z20082008-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/692engPimentel, Sara Machado Ferreirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:56:12Zoai:repositorio.iscte-iul.pt:10071/692Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:28:46.441434Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
The time aggregation of sharpe ratio |
title |
The time aggregation of sharpe ratio |
spellingShingle |
The time aggregation of sharpe ratio Pimentel, Sara Machado Ferreira Sharpe ratio time aggregation GARCH model Theorem of Diebold Índice de Sharpe Agregação temporal Modelos GARCH Teorema de Diebold |
title_short |
The time aggregation of sharpe ratio |
title_full |
The time aggregation of sharpe ratio |
title_fullStr |
The time aggregation of sharpe ratio |
title_full_unstemmed |
The time aggregation of sharpe ratio |
title_sort |
The time aggregation of sharpe ratio |
author |
Pimentel, Sara Machado Ferreira |
author_facet |
Pimentel, Sara Machado Ferreira |
author_role |
author |
dc.contributor.author.fl_str_mv |
Pimentel, Sara Machado Ferreira |
dc.subject.por.fl_str_mv |
Sharpe ratio time aggregation GARCH model Theorem of Diebold Índice de Sharpe Agregação temporal Modelos GARCH Teorema de Diebold |
topic |
Sharpe ratio time aggregation GARCH model Theorem of Diebold Índice de Sharpe Agregação temporal Modelos GARCH Teorema de Diebold |
description |
More than four decades have passed and the Sharpe Ratio (SR) continues to be one of the most popular portfolio risk adjusted performance measures. We comment on Lo’s (2002) results for the time aggregation of SR considering a different approach to deal with the conditional heteroskedasticity of returns. Based on a theorem proposed by Diebold (1986, 1988) we verify, for the series of financial returns with no serial correlation, that the most common method for time aggregation, the product of the higher-frequency SR by the square root of the number of periods contained in the lower-frequency holding period, can still be used in the presence of heteroskedasticity, when higher-frequency returns have been generated by a GARCH process and aggregated returns converge to the normal distribution. In an empirical application based on 65 investment funds, the convergence to normality is illustrated, showing that in 70% of the cases the convergence is held at least when daily returns are aggregated into annual frequency. Moreover, we show that serial correlation tends to disappear when the number of periods in the aggregation process tends to infinity and the most common method of SR time aggregation should not be disregarded as a valid method. The results are in accordance with Lo (2002) who roughly states that when serial correlation is not significant, the time aggregation of SR should be performed with the most common method of time aggregation. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-09-09T15:48:48Z 2008-01-01T00:00:00Z 2008 2008-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/692 |
url |
http://hdl.handle.net/10071/692 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/octet-stream |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134850434727936 |