Hybrid method for simulation of a fractional COVID-19 model with real case application
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/32559 |
Resumo: | In this research, we provide a mathematical analysis for the novel coronavirus responsible for COVID-19, which continues to be a big source of threat for humanity. Our fractional-order analysis is carried out using a non-singular kernel type operator known as the Atangana-Baleanu-Caputo (ABC) derivative. We parametrize the model adopting available information of the disease from Pakistan in the period 9 April to 2 June 2020. We obtain the required solution with the help of a hybrid method, which is a combination of the decomposition method and the Laplace transform. Furthermore, a sensitivity analysis is carried out to evaluate the parameters that are more sensitive to the basic reproduction number of the model. Our results are compared with the real data of Pakistan and numerical plots are presented at various fractional orders. |
id |
RCAP_305cfaa237e262a1eabb9d3ad4912c84 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/32559 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Hybrid method for simulation of a fractional COVID-19 model with real case applicationCoronavirus disease 2019 (COVID-19)ABC derivativeHybrid methodExistence analysisSemi-analytical solutionIn this research, we provide a mathematical analysis for the novel coronavirus responsible for COVID-19, which continues to be a big source of threat for humanity. Our fractional-order analysis is carried out using a non-singular kernel type operator known as the Atangana-Baleanu-Caputo (ABC) derivative. We parametrize the model adopting available information of the disease from Pakistan in the period 9 April to 2 June 2020. We obtain the required solution with the help of a hybrid method, which is a combination of the decomposition method and the Laplace transform. Furthermore, a sensitivity analysis is carried out to evaluate the parameters that are more sensitive to the basic reproduction number of the model. Our results are compared with the real data of Pakistan and numerical plots are presented at various fractional orders.MDPI2021-11-05T11:56:03Z2021-12-01T00:00:00Z2021-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/32559eng10.3390/axioms10040290Din, AnwarudKhan, AmirZeb, AnwarAmmi, Moulay Rchid SidiTilioua, MouhcineTorres, Delfim F. M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:02:38Zoai:ria.ua.pt:10773/32559Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:04:09.090177Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Hybrid method for simulation of a fractional COVID-19 model with real case application |
title |
Hybrid method for simulation of a fractional COVID-19 model with real case application |
spellingShingle |
Hybrid method for simulation of a fractional COVID-19 model with real case application Din, Anwarud Coronavirus disease 2019 (COVID-19) ABC derivative Hybrid method Existence analysis Semi-analytical solution |
title_short |
Hybrid method for simulation of a fractional COVID-19 model with real case application |
title_full |
Hybrid method for simulation of a fractional COVID-19 model with real case application |
title_fullStr |
Hybrid method for simulation of a fractional COVID-19 model with real case application |
title_full_unstemmed |
Hybrid method for simulation of a fractional COVID-19 model with real case application |
title_sort |
Hybrid method for simulation of a fractional COVID-19 model with real case application |
author |
Din, Anwarud |
author_facet |
Din, Anwarud Khan, Amir Zeb, Anwar Ammi, Moulay Rchid Sidi Tilioua, Mouhcine Torres, Delfim F. M. |
author_role |
author |
author2 |
Khan, Amir Zeb, Anwar Ammi, Moulay Rchid Sidi Tilioua, Mouhcine Torres, Delfim F. M. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Din, Anwarud Khan, Amir Zeb, Anwar Ammi, Moulay Rchid Sidi Tilioua, Mouhcine Torres, Delfim F. M. |
dc.subject.por.fl_str_mv |
Coronavirus disease 2019 (COVID-19) ABC derivative Hybrid method Existence analysis Semi-analytical solution |
topic |
Coronavirus disease 2019 (COVID-19) ABC derivative Hybrid method Existence analysis Semi-analytical solution |
description |
In this research, we provide a mathematical analysis for the novel coronavirus responsible for COVID-19, which continues to be a big source of threat for humanity. Our fractional-order analysis is carried out using a non-singular kernel type operator known as the Atangana-Baleanu-Caputo (ABC) derivative. We parametrize the model adopting available information of the disease from Pakistan in the period 9 April to 2 June 2020. We obtain the required solution with the help of a hybrid method, which is a combination of the decomposition method and the Laplace transform. Furthermore, a sensitivity analysis is carried out to evaluate the parameters that are more sensitive to the basic reproduction number of the model. Our results are compared with the real data of Pakistan and numerical plots are presented at various fractional orders. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-05T11:56:03Z 2021-12-01T00:00:00Z 2021-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/32559 |
url |
http://hdl.handle.net/10773/32559 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.3390/axioms10040290 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137697260896256 |