Development and evaluation of different electroactive poly(vinylidene fluoride) architectures for endothelial cell culture
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/81871 |
Resumo: | Tissue engineering (TE) aims to develop structures that improve or even replace the biological functions of tissues and organs. Mechanical properties, physical-chemical characteristics, biocompatibility, and biological performance of the materials are essential factors for their applicability in TE. Poly(vinylidene fluoride) (PVDF) is a thermoplastic polymer that exhibits good mechanical properties, high biocompatibility and excellent thermal properties. However, PVDF structuring, and the corresponding processing methods used for its preparation are known to significantly influence these characteristics. In this study, doctor blade, salt-leaching, and electrospinning processing methods were used to produce PVDF-based structures in the form of films, porous membranes, and fiber scaffolds, respectively. These PVDF scaffolds were subjected to a variety of characterizations and analyses, including physicochemical analysis, contact angle measurement, cytotoxicity assessment and cell proliferation. All prepared PVDF scaffolds are characterized by a mechanical response typical of ductile materials. PVDF films displayed mostly vibration modes for the a-phase, while the remaining PVDF samples were characterized by a higher content of electroactive β-phase due the low temperature solvent evaporation during processing. No significant variations have been observed between the different PVDF membranes with respect to the melting transition. In addition, all analysed PVDF samples present a hydrophobic behavior. On the other hand, cytotoxicity assays confirm that cell viability is maintained independently of the architecture and processing method. Finally, all the PVDF samples promote human umbilical vein endothelial cells (HUVECs) proliferation, being higher on the PVDF film and electrospun randomly-oriented membranes. These findings demonstrated the importance of PVDF topography on HUVEC behavior, which can be used for the design of vascular implants. |
id |
RCAP_30c5e1fc00d45417040199def87233e6 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/81871 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Development and evaluation of different electroactive poly(vinylidene fluoride) architectures for endothelial cell culturePVDFFilmsMembranesElectrospinningTissue engineeringScaffoldsScience & TechnologyTissue engineering (TE) aims to develop structures that improve or even replace the biological functions of tissues and organs. Mechanical properties, physical-chemical characteristics, biocompatibility, and biological performance of the materials are essential factors for their applicability in TE. Poly(vinylidene fluoride) (PVDF) is a thermoplastic polymer that exhibits good mechanical properties, high biocompatibility and excellent thermal properties. However, PVDF structuring, and the corresponding processing methods used for its preparation are known to significantly influence these characteristics. In this study, doctor blade, salt-leaching, and electrospinning processing methods were used to produce PVDF-based structures in the form of films, porous membranes, and fiber scaffolds, respectively. These PVDF scaffolds were subjected to a variety of characterizations and analyses, including physicochemical analysis, contact angle measurement, cytotoxicity assessment and cell proliferation. All prepared PVDF scaffolds are characterized by a mechanical response typical of ductile materials. PVDF films displayed mostly vibration modes for the a-phase, while the remaining PVDF samples were characterized by a higher content of electroactive β-phase due the low temperature solvent evaporation during processing. No significant variations have been observed between the different PVDF membranes with respect to the melting transition. In addition, all analysed PVDF samples present a hydrophobic behavior. On the other hand, cytotoxicity assays confirm that cell viability is maintained independently of the architecture and processing method. Finally, all the PVDF samples promote human umbilical vein endothelial cells (HUVECs) proliferation, being higher on the PVDF film and electrospun randomly-oriented membranes. These findings demonstrated the importance of PVDF topography on HUVEC behavior, which can be used for the design of vascular implants.This work has been partially funded by the Junta de Extremadura (Spain), the Spanish Ministry of Science and Innovation, the European Social Fund, the European Regional Development Fund, and the European Next Generation Funds (Grant Numbers PD18077, TA18023, and GR21201). The authors also thanks to Portuguese Foundation for Science and Technology (FCT) for financial support under grants SFRH/BD/140698/2018 (RP), 2020.04163. CEECIND (CR). The also authors acknowledge funding by Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project PID 2019-106099RB-C43/AEI/10.13039/501100011033 and from the Basque Government Industry Departments under the ELKARTEK program.Frontiers MediaUniversidade do MinhoDurán-Rey, DavidBrito-Pereira, RicardoRibeiro, ClarisseRibeiro, Sylvie OliveiraSánchez-Margallo, Juan A.Crisóstomo, VerónicaIrastorza, IgorSilván, UnaiLanceros-Méndez, S.Sánchez-Margallo, Francisco Miguel2022-102022-10-01T00:00:00Z10000-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/81871engDurán-Rey D, Brito-Pereira R, Ribeiro C, Ribeiro S, Sánchez-Margallo JA, Crisóstomo V, Irastorza I, Silván U, Lanceros-Méndez S and Sánchez-Margallo FM (2022) Development and evaluation of different electroactive poly(vinylidene fluoride) architectures for endothelial cell culture. Front. Bioeng. Biotechnol. 10:1044667. doi: 10.3389/fbioe.2022.10446672296-418510.3389/fbioe.2022.1044667info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-30T01:24:25Zoai:repositorium.sdum.uminho.pt:1822/81871Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:06:41.345386Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Development and evaluation of different electroactive poly(vinylidene fluoride) architectures for endothelial cell culture |
title |
Development and evaluation of different electroactive poly(vinylidene fluoride) architectures for endothelial cell culture |
spellingShingle |
Development and evaluation of different electroactive poly(vinylidene fluoride) architectures for endothelial cell culture Durán-Rey, David PVDF Films Membranes Electrospinning Tissue engineering Scaffolds Science & Technology |
title_short |
Development and evaluation of different electroactive poly(vinylidene fluoride) architectures for endothelial cell culture |
title_full |
Development and evaluation of different electroactive poly(vinylidene fluoride) architectures for endothelial cell culture |
title_fullStr |
Development and evaluation of different electroactive poly(vinylidene fluoride) architectures for endothelial cell culture |
title_full_unstemmed |
Development and evaluation of different electroactive poly(vinylidene fluoride) architectures for endothelial cell culture |
title_sort |
Development and evaluation of different electroactive poly(vinylidene fluoride) architectures for endothelial cell culture |
author |
Durán-Rey, David |
author_facet |
Durán-Rey, David Brito-Pereira, Ricardo Ribeiro, Clarisse Ribeiro, Sylvie Oliveira Sánchez-Margallo, Juan A. Crisóstomo, Verónica Irastorza, Igor Silván, Unai Lanceros-Méndez, S. Sánchez-Margallo, Francisco Miguel |
author_role |
author |
author2 |
Brito-Pereira, Ricardo Ribeiro, Clarisse Ribeiro, Sylvie Oliveira Sánchez-Margallo, Juan A. Crisóstomo, Verónica Irastorza, Igor Silván, Unai Lanceros-Méndez, S. Sánchez-Margallo, Francisco Miguel |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Durán-Rey, David Brito-Pereira, Ricardo Ribeiro, Clarisse Ribeiro, Sylvie Oliveira Sánchez-Margallo, Juan A. Crisóstomo, Verónica Irastorza, Igor Silván, Unai Lanceros-Méndez, S. Sánchez-Margallo, Francisco Miguel |
dc.subject.por.fl_str_mv |
PVDF Films Membranes Electrospinning Tissue engineering Scaffolds Science & Technology |
topic |
PVDF Films Membranes Electrospinning Tissue engineering Scaffolds Science & Technology |
description |
Tissue engineering (TE) aims to develop structures that improve or even replace the biological functions of tissues and organs. Mechanical properties, physical-chemical characteristics, biocompatibility, and biological performance of the materials are essential factors for their applicability in TE. Poly(vinylidene fluoride) (PVDF) is a thermoplastic polymer that exhibits good mechanical properties, high biocompatibility and excellent thermal properties. However, PVDF structuring, and the corresponding processing methods used for its preparation are known to significantly influence these characteristics. In this study, doctor blade, salt-leaching, and electrospinning processing methods were used to produce PVDF-based structures in the form of films, porous membranes, and fiber scaffolds, respectively. These PVDF scaffolds were subjected to a variety of characterizations and analyses, including physicochemical analysis, contact angle measurement, cytotoxicity assessment and cell proliferation. All prepared PVDF scaffolds are characterized by a mechanical response typical of ductile materials. PVDF films displayed mostly vibration modes for the a-phase, while the remaining PVDF samples were characterized by a higher content of electroactive β-phase due the low temperature solvent evaporation during processing. No significant variations have been observed between the different PVDF membranes with respect to the melting transition. In addition, all analysed PVDF samples present a hydrophobic behavior. On the other hand, cytotoxicity assays confirm that cell viability is maintained independently of the architecture and processing method. Finally, all the PVDF samples promote human umbilical vein endothelial cells (HUVECs) proliferation, being higher on the PVDF film and electrospun randomly-oriented membranes. These findings demonstrated the importance of PVDF topography on HUVEC behavior, which can be used for the design of vascular implants. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
10000-01-01T00:00:00Z 2022-10 2022-10-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/81871 |
url |
https://hdl.handle.net/1822/81871 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Durán-Rey D, Brito-Pereira R, Ribeiro C, Ribeiro S, Sánchez-Margallo JA, Crisóstomo V, Irastorza I, Silván U, Lanceros-Méndez S and Sánchez-Margallo FM (2022) Development and evaluation of different electroactive poly(vinylidene fluoride) architectures for endothelial cell culture. Front. Bioeng. Biotechnol. 10:1044667. doi: 10.3389/fbioe.2022.1044667 2296-4185 10.3389/fbioe.2022.1044667 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132482692448256 |