The application of statistical modelling on invasive alien species risk assessment: a systematic review

Detalhes bibliográficos
Autor(a) principal: Félix, Ana Cristina Rodrigues
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/28383
Resumo: Either deliberately or by accident, humans have been introducing exotic species into novel habitats at an alarming rate and the ongoing climate change can synergistically promote this phenomenon, at times. Risk assessment of exotic species is essential to support the prevention of new introductions in the case of species that represent negative impacts on the various components of ecosystems. Over the last 20 years, statistical modelling has been recognized as a useful tool in predicting invasion risks specifically for exotic plants. In this systematic review, the application of statistical models to the risk assessment of alien plant species was analyzed to assess how the application of these tools has evolved over time, as well as to identify the approaches used and finally the current limitations inherent to these studies. The results support that static and spatially explicit machine learning models that predict potential species distribution are the most commonly used techniques, although some pertinent limitations related to these models have also been identified. It has been concluded that a formalization of risk assessment protocols should include the standardized use of species distribution models, and both techniques and approaches should be scientifically proven to maximize accuracy and reduce errors in results.
id RCAP_30dc40c7c324650c132bea590fde6a67
oai_identifier_str oai:ria.ua.pt:10773/28383
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The application of statistical modelling on invasive alien species risk assessment: a systematic reviewInvasive alien plantsRisk assessmentStatistical modellingSpecies distribution modelsSystematic reviewEither deliberately or by accident, humans have been introducing exotic species into novel habitats at an alarming rate and the ongoing climate change can synergistically promote this phenomenon, at times. Risk assessment of exotic species is essential to support the prevention of new introductions in the case of species that represent negative impacts on the various components of ecosystems. Over the last 20 years, statistical modelling has been recognized as a useful tool in predicting invasion risks specifically for exotic plants. In this systematic review, the application of statistical models to the risk assessment of alien plant species was analyzed to assess how the application of these tools has evolved over time, as well as to identify the approaches used and finally the current limitations inherent to these studies. The results support that static and spatially explicit machine learning models that predict potential species distribution are the most commonly used techniques, although some pertinent limitations related to these models have also been identified. It has been concluded that a formalization of risk assessment protocols should include the standardized use of species distribution models, and both techniques and approaches should be scientifically proven to maximize accuracy and reduce errors in results.Quer deliberadamente ou acidentalmente, os seres humanos têm vindo a introduzir espécies exóticas em novos habitats a um ritmo alarmante, sendo que as alterações climáticas que se têm vindo a sentir, por vezes promovem sinergeticamente este fenómeno. A avaliação de risco de espécies exóticas é essencial para apoiar a prevenção de novas introduções no caso de espécies que potencialmente representam algum impacto negativo nos vários componentes dos ecossistemas. Ao longo dos últimos 20 anos, a modelação estatística tem vindo a ser reconhecida como uma ferramenta útil na previsão dos riscos de invasão especificamente no caso de plantas exóticas. Nesta revisão sistemática, analisou-se a aplicação de modelos estatísticos na avaliação do risco de espécies de plantas exóticas, com a finalidade de avaliar como a aplicação destas ferramentas evoluiu ao longo do tempo, bem como identificar as abordagens utilizadas e finalmente as atuais limitações inerentes a estes estudos. Os resultados apoiam que os modelos estáticos e espacialmente explícitos de aprendizagem automática que preveem a distribuição potencial de espécies são as técnicas mais comummente utilizadas, embora algumas limitações pertinentes relacionadas com esses modelos tenham sido também identificadas. Concluiu-se que uma formalização dos protocolos de avaliação de risco deverá incluir de forma estandardizada a utilização de modelos de distribuição de espécies, tanto as técnicas como as abordagens deverão ser cientificamente comprovadas de forma a maximizar a precisão e diminuir os erros dos resultados.2019-122019-12-01T00:00:00Z2022-01-09T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/28383engFélix, Ana Cristina Rodriguesinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:54:54Zoai:ria.ua.pt:10773/28383Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:00:56.642123Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The application of statistical modelling on invasive alien species risk assessment: a systematic review
title The application of statistical modelling on invasive alien species risk assessment: a systematic review
spellingShingle The application of statistical modelling on invasive alien species risk assessment: a systematic review
Félix, Ana Cristina Rodrigues
Invasive alien plants
Risk assessment
Statistical modelling
Species distribution models
Systematic review
title_short The application of statistical modelling on invasive alien species risk assessment: a systematic review
title_full The application of statistical modelling on invasive alien species risk assessment: a systematic review
title_fullStr The application of statistical modelling on invasive alien species risk assessment: a systematic review
title_full_unstemmed The application of statistical modelling on invasive alien species risk assessment: a systematic review
title_sort The application of statistical modelling on invasive alien species risk assessment: a systematic review
author Félix, Ana Cristina Rodrigues
author_facet Félix, Ana Cristina Rodrigues
author_role author
dc.contributor.author.fl_str_mv Félix, Ana Cristina Rodrigues
dc.subject.por.fl_str_mv Invasive alien plants
Risk assessment
Statistical modelling
Species distribution models
Systematic review
topic Invasive alien plants
Risk assessment
Statistical modelling
Species distribution models
Systematic review
description Either deliberately or by accident, humans have been introducing exotic species into novel habitats at an alarming rate and the ongoing climate change can synergistically promote this phenomenon, at times. Risk assessment of exotic species is essential to support the prevention of new introductions in the case of species that represent negative impacts on the various components of ecosystems. Over the last 20 years, statistical modelling has been recognized as a useful tool in predicting invasion risks specifically for exotic plants. In this systematic review, the application of statistical models to the risk assessment of alien plant species was analyzed to assess how the application of these tools has evolved over time, as well as to identify the approaches used and finally the current limitations inherent to these studies. The results support that static and spatially explicit machine learning models that predict potential species distribution are the most commonly used techniques, although some pertinent limitations related to these models have also been identified. It has been concluded that a formalization of risk assessment protocols should include the standardized use of species distribution models, and both techniques and approaches should be scientifically proven to maximize accuracy and reduce errors in results.
publishDate 2019
dc.date.none.fl_str_mv 2019-12
2019-12-01T00:00:00Z
2022-01-09T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/28383
url http://hdl.handle.net/10773/28383
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137665297154048