Machine Learning for the Early Detection of Acute Episodes in Intensive Care Units
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/143720 |
Resumo: | In Intensive Care Units (ICUs), mere seconds might define whether a patient lives or dies. Predictive models capable of detecting acute events in advance may allow for anticipated interventions, which could mitigate the consequences of those events and promote a greater number of lives saved. Several predictive models developed for this purpose have failed to meet the high requirements of ICUs. This might be due to the complexity of anomaly prediction tasks, and the inefficient utilization of ICU data. Moreover, some essential intensive care demands, such as continuous monitoring, are often not considered when developing these solutions, making them unfit to real contexts. This work approaches two topics within the mentioned problem: the relevance of ICU data used to predict acute episodes and the benefits of applying Layered Learning (LL) techniques to counter the complexity of these tasks. The first topic was undertaken through a study on the relevance of information retrieved from physiological signals and clinical data for the early detection of Acute Hypotensive Episodes (AHE) in ICUs. Then, the potentialities of LL were accessed through an in-depth analysis of the applicability of a recently proposed approach on the same topic. Furthermore, different optimization strategies enabled by LL configurations were proposed, including a new approach aimed at false alarm reduction. The results regarding data relevance might contribute to a shift in paradigm in terms of information retrieved for AHE prediction. It was found that most of the information commonly used in the literature might be wrongly perceived as valuable, since only three features related to blood pressure measures presented actual distinctive traits. On another note, the different LL-based strategies developed confirm the versatile possibilities offered by this paradigm. Although these methodologies did not promote significant performance improvements in this specific context, they can be further explored and adapted to other domains. |
id |
RCAP_3196a57d67e20723ba77b5320d0812b1 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/143720 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Machine Learning for the Early Detection of Acute Episodes in Intensive Care UnitsIntensive CarePhysiological SignalsAcute Hypotensive EpisodesAnomaly DetectionMachine LearningLayered LearningDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasIn Intensive Care Units (ICUs), mere seconds might define whether a patient lives or dies. Predictive models capable of detecting acute events in advance may allow for anticipated interventions, which could mitigate the consequences of those events and promote a greater number of lives saved. Several predictive models developed for this purpose have failed to meet the high requirements of ICUs. This might be due to the complexity of anomaly prediction tasks, and the inefficient utilization of ICU data. Moreover, some essential intensive care demands, such as continuous monitoring, are often not considered when developing these solutions, making them unfit to real contexts. This work approaches two topics within the mentioned problem: the relevance of ICU data used to predict acute episodes and the benefits of applying Layered Learning (LL) techniques to counter the complexity of these tasks. The first topic was undertaken through a study on the relevance of information retrieved from physiological signals and clinical data for the early detection of Acute Hypotensive Episodes (AHE) in ICUs. Then, the potentialities of LL were accessed through an in-depth analysis of the applicability of a recently proposed approach on the same topic. Furthermore, different optimization strategies enabled by LL configurations were proposed, including a new approach aimed at false alarm reduction. The results regarding data relevance might contribute to a shift in paradigm in terms of information retrieved for AHE prediction. It was found that most of the information commonly used in the literature might be wrongly perceived as valuable, since only three features related to blood pressure measures presented actual distinctive traits. On another note, the different LL-based strategies developed confirm the versatile possibilities offered by this paradigm. Although these methodologies did not promote significant performance improvements in this specific context, they can be further explored and adapted to other domains.Em Unidades de Cuidados Intensivos (UCIs), meros segundos podem ser o fator determinante entre a vida e a morte de um paciente. Modelos preditivos para a previsão de eventos adversos podem promover intervenções antecipadas, com vista à mitigação das consequências destes eventos, e traduzir-se num maior número de vidas salvas. Múltiplos modelos desenvolvidos para este propósito não corresponderam às exigências das UCIs. Isto pode dever-se à complexidade de tarefas de previsão de anomalias e à ineficiência no uso da informação gerada em UCIs. Além disto, algumas necessidades inerentes à provisão de cuidados intensivos, tais como a monitorização contínua, são muitas vezes ignoradas no desenvolvimento destas soluções, tornando-as desadequadas para contextos reais. Este projeto aborda dois tópicos dentro da problemática introduzida, nomeadamente a relevância da informação usada para prever episódios agudos, e os benefícios de técnicas de Aprendizagem em Camadas (AC) para contrariar a complexidade destas tarefas. Numa primeira fase, foi conduzido um estudo sobre o impacto de diversos sinais fisiológicos e dados clínicos no contexto da previsão de episódios agudos de hipotensão. As potencialidades do paradigma de AC foram avaliadas através da análise de uma abordagem proposta recentemente para o mesmo caso de estudo. Nesta segunda fase, diversas estratégias de otimização compatíveis com configurações em camadas foram desenvolvidas, incluindo um modelo para reduzir falsos alarmes. Os resultados relativos à relevância da informação podem contribuir para uma mudança de paradigma em termos da informação usada para treinar estes modelos. A maior parte da informação poderá estar a ser erroneamente considerada como importante, uma vez que apenas três variáveis, deduzidas dos valores de pressão arterial, foram identificadas como realmente impactantes. Por outro lado, as diferentes estratégias baseadas em AC confirmaram a versatilidade oferecida por este paradigma. Apesar de não terem promovido melhorias significativas neste contexto, estes métodos podem ser adaptados a outros domínios.Gamboa, HugoCerqueira, VítorRUNRibeiro, Bruno Marques2022-09-14T14:11:17Z2022-022022-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/143720enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:22:23Zoai:run.unl.pt:10362/143720Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:51:06.495826Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Machine Learning for the Early Detection of Acute Episodes in Intensive Care Units |
title |
Machine Learning for the Early Detection of Acute Episodes in Intensive Care Units |
spellingShingle |
Machine Learning for the Early Detection of Acute Episodes in Intensive Care Units Ribeiro, Bruno Marques Intensive Care Physiological Signals Acute Hypotensive Episodes Anomaly Detection Machine Learning Layered Learning Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
title_short |
Machine Learning for the Early Detection of Acute Episodes in Intensive Care Units |
title_full |
Machine Learning for the Early Detection of Acute Episodes in Intensive Care Units |
title_fullStr |
Machine Learning for the Early Detection of Acute Episodes in Intensive Care Units |
title_full_unstemmed |
Machine Learning for the Early Detection of Acute Episodes in Intensive Care Units |
title_sort |
Machine Learning for the Early Detection of Acute Episodes in Intensive Care Units |
author |
Ribeiro, Bruno Marques |
author_facet |
Ribeiro, Bruno Marques |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gamboa, Hugo Cerqueira, Vítor RUN |
dc.contributor.author.fl_str_mv |
Ribeiro, Bruno Marques |
dc.subject.por.fl_str_mv |
Intensive Care Physiological Signals Acute Hypotensive Episodes Anomaly Detection Machine Learning Layered Learning Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
topic |
Intensive Care Physiological Signals Acute Hypotensive Episodes Anomaly Detection Machine Learning Layered Learning Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
description |
In Intensive Care Units (ICUs), mere seconds might define whether a patient lives or dies. Predictive models capable of detecting acute events in advance may allow for anticipated interventions, which could mitigate the consequences of those events and promote a greater number of lives saved. Several predictive models developed for this purpose have failed to meet the high requirements of ICUs. This might be due to the complexity of anomaly prediction tasks, and the inefficient utilization of ICU data. Moreover, some essential intensive care demands, such as continuous monitoring, are often not considered when developing these solutions, making them unfit to real contexts. This work approaches two topics within the mentioned problem: the relevance of ICU data used to predict acute episodes and the benefits of applying Layered Learning (LL) techniques to counter the complexity of these tasks. The first topic was undertaken through a study on the relevance of information retrieved from physiological signals and clinical data for the early detection of Acute Hypotensive Episodes (AHE) in ICUs. Then, the potentialities of LL were accessed through an in-depth analysis of the applicability of a recently proposed approach on the same topic. Furthermore, different optimization strategies enabled by LL configurations were proposed, including a new approach aimed at false alarm reduction. The results regarding data relevance might contribute to a shift in paradigm in terms of information retrieved for AHE prediction. It was found that most of the information commonly used in the literature might be wrongly perceived as valuable, since only three features related to blood pressure measures presented actual distinctive traits. On another note, the different LL-based strategies developed confirm the versatile possibilities offered by this paradigm. Although these methodologies did not promote significant performance improvements in this specific context, they can be further explored and adapted to other domains. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-14T14:11:17Z 2022-02 2022-02-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/143720 |
url |
http://hdl.handle.net/10362/143720 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138106177224704 |