On a constrained reaction-diffusion system related to a multiphase problem

Detalhes bibliográficos
Autor(a) principal: Rodrigues, José Francisco
Data de Publicação: 2009
Outros Autores: Santos, Lisa
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/9738
Resumo: We solve and characterize the Lagrange multipliers of a reaction- -diffusion system in the Gibbs simplex of $\R^{N+1}$ by considering strong solutions of a system of parabolic variational inequalities in $\R^N$. Exploring properties of the two obstacles evolution problem, we obtain and approximate a $N$-system involving the characteristic functions of the saturated and/or degenerated phases in the nonlinear reaction terms. We also show continuous dependence results and we establish sufficient conditions of non-degeneracy for the stability of those phase subregions.
id RCAP_320f3c30f7757ab884c250c94d93f82d
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/9738
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On a constrained reaction-diffusion system related to a multiphase problemReaction-diffusion systemsMultiphase problemsParabolic variational inequalitiesEvolutionary game dynamicsWe solve and characterize the Lagrange multipliers of a reaction- -diffusion system in the Gibbs simplex of $\R^{N+1}$ by considering strong solutions of a system of parabolic variational inequalities in $\R^N$. Exploring properties of the two obstacles evolution problem, we obtain and approximate a $N$-system involving the characteristic functions of the saturated and/or degenerated phases in the nonlinear reaction terms. We also show continuous dependence results and we establish sufficient conditions of non-degeneracy for the stability of those phase subregions.Fundação para a Ciência e a Tecnologia (FCT) - Project POCI/MAT/57546/2004American Institute of Mathematical Sciences (AIMS)Universidade do MinhoRodrigues, José FranciscoSantos, Lisa20092009-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/9738eng"Discrete and Continuous Dynamical Systems". ISSN 1078-0947. 25:1 (2009) 299-319.1078-0947info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:50:17Zoai:repositorium.sdum.uminho.pt:1822/9738Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:48:56.694998Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On a constrained reaction-diffusion system related to a multiphase problem
title On a constrained reaction-diffusion system related to a multiphase problem
spellingShingle On a constrained reaction-diffusion system related to a multiphase problem
Rodrigues, José Francisco
Reaction-diffusion systems
Multiphase problems
Parabolic variational inequalities
Evolutionary game dynamics
title_short On a constrained reaction-diffusion system related to a multiphase problem
title_full On a constrained reaction-diffusion system related to a multiphase problem
title_fullStr On a constrained reaction-diffusion system related to a multiphase problem
title_full_unstemmed On a constrained reaction-diffusion system related to a multiphase problem
title_sort On a constrained reaction-diffusion system related to a multiphase problem
author Rodrigues, José Francisco
author_facet Rodrigues, José Francisco
Santos, Lisa
author_role author
author2 Santos, Lisa
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Rodrigues, José Francisco
Santos, Lisa
dc.subject.por.fl_str_mv Reaction-diffusion systems
Multiphase problems
Parabolic variational inequalities
Evolutionary game dynamics
topic Reaction-diffusion systems
Multiphase problems
Parabolic variational inequalities
Evolutionary game dynamics
description We solve and characterize the Lagrange multipliers of a reaction- -diffusion system in the Gibbs simplex of $\R^{N+1}$ by considering strong solutions of a system of parabolic variational inequalities in $\R^N$. Exploring properties of the two obstacles evolution problem, we obtain and approximate a $N$-system involving the characteristic functions of the saturated and/or degenerated phases in the nonlinear reaction terms. We also show continuous dependence results and we establish sufficient conditions of non-degeneracy for the stability of those phase subregions.
publishDate 2009
dc.date.none.fl_str_mv 2009
2009-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/9738
url http://hdl.handle.net/1822/9738
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv "Discrete and Continuous Dynamical Systems". ISSN 1078-0947. 25:1 (2009) 299-319.
1078-0947
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Institute of Mathematical Sciences (AIMS)
publisher.none.fl_str_mv American Institute of Mathematical Sciences (AIMS)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133069455654912