A time-fractional Borel-Pompeiu formula and a related hypercomplex operator calculus

Detalhes bibliográficos
Autor(a) principal: Ferreira, M.
Data de Publicação: 2019
Outros Autores: Rodrigues, M. M., Vieira, M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/26623
Resumo: In this paper we develop a time-fractional operator calculus in fractional Clifford analysis. Initially we study the $L_p$-integrability of the fundamental solutions of the multi-dimensional time-fractional diffusion operator and the associated time-fractional parabolic Dirac operator. Then we introduce the time-fractional analogues of the Teodorescu and Cauchy-Bitsadze operators in a cylindrical domain, and we investigate their main mapping properties. As a main result, we prove a time-fractional version of the Borel-Pompeiu formula based on a time-fractional Stokes' formula. This tool in hand allows us to present a Hodge-type decomposition for the forward time-fractional parabolic Dirac operator with left Caputo fractional derivative in the time coordinate. The obtained results exhibit an interesting duality relation between forward and backward parabolic Dirac operators and Caputo and Riemann-Liouville time-fractional derivatives. We round off this paper by giving a direct application of the obtained results for solving time-fractional boundary value problems.
id RCAP_322efe647ed81d6725341d91432d6490
oai_identifier_str oai:ria.ua.pt:10773/26623
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A time-fractional Borel-Pompeiu formula and a related hypercomplex operator calculusFractional Clifford analysisFractional derivativesTime-fractional parabolic Dirac operatorFundamental solutionBorel-Pompeiu formulaIn this paper we develop a time-fractional operator calculus in fractional Clifford analysis. Initially we study the $L_p$-integrability of the fundamental solutions of the multi-dimensional time-fractional diffusion operator and the associated time-fractional parabolic Dirac operator. Then we introduce the time-fractional analogues of the Teodorescu and Cauchy-Bitsadze operators in a cylindrical domain, and we investigate their main mapping properties. As a main result, we prove a time-fractional version of the Borel-Pompeiu formula based on a time-fractional Stokes' formula. This tool in hand allows us to present a Hodge-type decomposition for the forward time-fractional parabolic Dirac operator with left Caputo fractional derivative in the time coordinate. The obtained results exhibit an interesting duality relation between forward and backward parabolic Dirac operators and Caputo and Riemann-Liouville time-fractional derivatives. We round off this paper by giving a direct application of the obtained results for solving time-fractional boundary value problems.Springer2019-092019-09-01T00:00:00Z2020-01-11T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/26623eng1661-825410.1007/s11785-018-00887-7Ferreira, M.Rodrigues, M. M.Vieira, M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:51:34Zoai:ria.ua.pt:10773/26623Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:59:33.960652Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A time-fractional Borel-Pompeiu formula and a related hypercomplex operator calculus
title A time-fractional Borel-Pompeiu formula and a related hypercomplex operator calculus
spellingShingle A time-fractional Borel-Pompeiu formula and a related hypercomplex operator calculus
Ferreira, M.
Fractional Clifford analysis
Fractional derivatives
Time-fractional parabolic Dirac operator
Fundamental solution
Borel-Pompeiu formula
title_short A time-fractional Borel-Pompeiu formula and a related hypercomplex operator calculus
title_full A time-fractional Borel-Pompeiu formula and a related hypercomplex operator calculus
title_fullStr A time-fractional Borel-Pompeiu formula and a related hypercomplex operator calculus
title_full_unstemmed A time-fractional Borel-Pompeiu formula and a related hypercomplex operator calculus
title_sort A time-fractional Borel-Pompeiu formula and a related hypercomplex operator calculus
author Ferreira, M.
author_facet Ferreira, M.
Rodrigues, M. M.
Vieira, M.
author_role author
author2 Rodrigues, M. M.
Vieira, M.
author2_role author
author
dc.contributor.author.fl_str_mv Ferreira, M.
Rodrigues, M. M.
Vieira, M.
dc.subject.por.fl_str_mv Fractional Clifford analysis
Fractional derivatives
Time-fractional parabolic Dirac operator
Fundamental solution
Borel-Pompeiu formula
topic Fractional Clifford analysis
Fractional derivatives
Time-fractional parabolic Dirac operator
Fundamental solution
Borel-Pompeiu formula
description In this paper we develop a time-fractional operator calculus in fractional Clifford analysis. Initially we study the $L_p$-integrability of the fundamental solutions of the multi-dimensional time-fractional diffusion operator and the associated time-fractional parabolic Dirac operator. Then we introduce the time-fractional analogues of the Teodorescu and Cauchy-Bitsadze operators in a cylindrical domain, and we investigate their main mapping properties. As a main result, we prove a time-fractional version of the Borel-Pompeiu formula based on a time-fractional Stokes' formula. This tool in hand allows us to present a Hodge-type decomposition for the forward time-fractional parabolic Dirac operator with left Caputo fractional derivative in the time coordinate. The obtained results exhibit an interesting duality relation between forward and backward parabolic Dirac operators and Caputo and Riemann-Liouville time-fractional derivatives. We round off this paper by giving a direct application of the obtained results for solving time-fractional boundary value problems.
publishDate 2019
dc.date.none.fl_str_mv 2019-09
2019-09-01T00:00:00Z
2020-01-11T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/26623
url http://hdl.handle.net/10773/26623
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1661-8254
10.1007/s11785-018-00887-7
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137650229116928