A time-fractional Borel-Pompeiu formula and a related hypercomplex operator calculus
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/26623 |
Resumo: | In this paper we develop a time-fractional operator calculus in fractional Clifford analysis. Initially we study the $L_p$-integrability of the fundamental solutions of the multi-dimensional time-fractional diffusion operator and the associated time-fractional parabolic Dirac operator. Then we introduce the time-fractional analogues of the Teodorescu and Cauchy-Bitsadze operators in a cylindrical domain, and we investigate their main mapping properties. As a main result, we prove a time-fractional version of the Borel-Pompeiu formula based on a time-fractional Stokes' formula. This tool in hand allows us to present a Hodge-type decomposition for the forward time-fractional parabolic Dirac operator with left Caputo fractional derivative in the time coordinate. The obtained results exhibit an interesting duality relation between forward and backward parabolic Dirac operators and Caputo and Riemann-Liouville time-fractional derivatives. We round off this paper by giving a direct application of the obtained results for solving time-fractional boundary value problems. |
id |
RCAP_322efe647ed81d6725341d91432d6490 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/26623 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A time-fractional Borel-Pompeiu formula and a related hypercomplex operator calculusFractional Clifford analysisFractional derivativesTime-fractional parabolic Dirac operatorFundamental solutionBorel-Pompeiu formulaIn this paper we develop a time-fractional operator calculus in fractional Clifford analysis. Initially we study the $L_p$-integrability of the fundamental solutions of the multi-dimensional time-fractional diffusion operator and the associated time-fractional parabolic Dirac operator. Then we introduce the time-fractional analogues of the Teodorescu and Cauchy-Bitsadze operators in a cylindrical domain, and we investigate their main mapping properties. As a main result, we prove a time-fractional version of the Borel-Pompeiu formula based on a time-fractional Stokes' formula. This tool in hand allows us to present a Hodge-type decomposition for the forward time-fractional parabolic Dirac operator with left Caputo fractional derivative in the time coordinate. The obtained results exhibit an interesting duality relation between forward and backward parabolic Dirac operators and Caputo and Riemann-Liouville time-fractional derivatives. We round off this paper by giving a direct application of the obtained results for solving time-fractional boundary value problems.Springer2019-092019-09-01T00:00:00Z2020-01-11T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/26623eng1661-825410.1007/s11785-018-00887-7Ferreira, M.Rodrigues, M. M.Vieira, M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:51:34Zoai:ria.ua.pt:10773/26623Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:59:33.960652Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A time-fractional Borel-Pompeiu formula and a related hypercomplex operator calculus |
title |
A time-fractional Borel-Pompeiu formula and a related hypercomplex operator calculus |
spellingShingle |
A time-fractional Borel-Pompeiu formula and a related hypercomplex operator calculus Ferreira, M. Fractional Clifford analysis Fractional derivatives Time-fractional parabolic Dirac operator Fundamental solution Borel-Pompeiu formula |
title_short |
A time-fractional Borel-Pompeiu formula and a related hypercomplex operator calculus |
title_full |
A time-fractional Borel-Pompeiu formula and a related hypercomplex operator calculus |
title_fullStr |
A time-fractional Borel-Pompeiu formula and a related hypercomplex operator calculus |
title_full_unstemmed |
A time-fractional Borel-Pompeiu formula and a related hypercomplex operator calculus |
title_sort |
A time-fractional Borel-Pompeiu formula and a related hypercomplex operator calculus |
author |
Ferreira, M. |
author_facet |
Ferreira, M. Rodrigues, M. M. Vieira, M. |
author_role |
author |
author2 |
Rodrigues, M. M. Vieira, M. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Ferreira, M. Rodrigues, M. M. Vieira, M. |
dc.subject.por.fl_str_mv |
Fractional Clifford analysis Fractional derivatives Time-fractional parabolic Dirac operator Fundamental solution Borel-Pompeiu formula |
topic |
Fractional Clifford analysis Fractional derivatives Time-fractional parabolic Dirac operator Fundamental solution Borel-Pompeiu formula |
description |
In this paper we develop a time-fractional operator calculus in fractional Clifford analysis. Initially we study the $L_p$-integrability of the fundamental solutions of the multi-dimensional time-fractional diffusion operator and the associated time-fractional parabolic Dirac operator. Then we introduce the time-fractional analogues of the Teodorescu and Cauchy-Bitsadze operators in a cylindrical domain, and we investigate their main mapping properties. As a main result, we prove a time-fractional version of the Borel-Pompeiu formula based on a time-fractional Stokes' formula. This tool in hand allows us to present a Hodge-type decomposition for the forward time-fractional parabolic Dirac operator with left Caputo fractional derivative in the time coordinate. The obtained results exhibit an interesting duality relation between forward and backward parabolic Dirac operators and Caputo and Riemann-Liouville time-fractional derivatives. We round off this paper by giving a direct application of the obtained results for solving time-fractional boundary value problems. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09 2019-09-01T00:00:00Z 2020-01-11T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/26623 |
url |
http://hdl.handle.net/10773/26623 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1661-8254 10.1007/s11785-018-00887-7 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137650229116928 |