A diagnostic plot for estimating the tail index of a distribution
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/4444 |
Resumo: | The problem of estimating the tail index in heavy-tailed distributions is very important in many applications. We propose a new graphical method that deals with this problem by selecting an appropriate number of upper order statistics. We also investigate the method’s theoretical properties are investigated. Several real datasets are analyzed using this new procedure and a simulation study is carried out to examine its performance in small, moderate and large samples. The results suggest that the new procedure overcomes many of the shortcomings present in some of the most common techniques—for example, the Hill and Zipf plots—used in the estimation of the tail index, and it performs very competitively when compared with other adaptive threshold procedures based on the asymptotic mean squared error of the Hill estimator. |
id |
RCAP_324e1d269e2407b370382066ad9e8bff |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/4444 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A diagnostic plot for estimating the tail index of a distributionHeavy-tailed distributionsSum plotTail indexScience & TechnologyThe problem of estimating the tail index in heavy-tailed distributions is very important in many applications. We propose a new graphical method that deals with this problem by selecting an appropriate number of upper order statistics. We also investigate the method’s theoretical properties are investigated. Several real datasets are analyzed using this new procedure and a simulation study is carried out to examine its performance in small, moderate and large samples. The results suggest that the new procedure overcomes many of the shortcomings present in some of the most common techniques—for example, the Hill and Zipf plots—used in the estimation of the tail index, and it performs very competitively when compared with other adaptive threshold procedures based on the asymptotic mean squared error of the Hill estimator.Fundação para a Ciência e a Tecnologia (FCT) - PRAXIS XXI.American Statistical AssociationUniversidade do MinhoSousa, Bruno deMichailidis, George2004-122004-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/4444eng"Journal of Computational and Graphical Statistics". ISSN 1061-8600. 13:4 (2004) 974-1001.1061-860010.1198/106186004X12335http://www.amstat.org/publications/jcgs/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:15:45Zoai:repositorium.sdum.uminho.pt:1822/4444Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:08:13.418516Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A diagnostic plot for estimating the tail index of a distribution |
title |
A diagnostic plot for estimating the tail index of a distribution |
spellingShingle |
A diagnostic plot for estimating the tail index of a distribution Sousa, Bruno de Heavy-tailed distributions Sum plot Tail index Science & Technology |
title_short |
A diagnostic plot for estimating the tail index of a distribution |
title_full |
A diagnostic plot for estimating the tail index of a distribution |
title_fullStr |
A diagnostic plot for estimating the tail index of a distribution |
title_full_unstemmed |
A diagnostic plot for estimating the tail index of a distribution |
title_sort |
A diagnostic plot for estimating the tail index of a distribution |
author |
Sousa, Bruno de |
author_facet |
Sousa, Bruno de Michailidis, George |
author_role |
author |
author2 |
Michailidis, George |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Sousa, Bruno de Michailidis, George |
dc.subject.por.fl_str_mv |
Heavy-tailed distributions Sum plot Tail index Science & Technology |
topic |
Heavy-tailed distributions Sum plot Tail index Science & Technology |
description |
The problem of estimating the tail index in heavy-tailed distributions is very important in many applications. We propose a new graphical method that deals with this problem by selecting an appropriate number of upper order statistics. We also investigate the method’s theoretical properties are investigated. Several real datasets are analyzed using this new procedure and a simulation study is carried out to examine its performance in small, moderate and large samples. The results suggest that the new procedure overcomes many of the shortcomings present in some of the most common techniques—for example, the Hill and Zipf plots—used in the estimation of the tail index, and it performs very competitively when compared with other adaptive threshold procedures based on the asymptotic mean squared error of the Hill estimator. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-12 2004-12-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/4444 |
url |
http://hdl.handle.net/1822/4444 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Journal of Computational and Graphical Statistics". ISSN 1061-8600. 13:4 (2004) 974-1001. 1061-8600 10.1198/106186004X12335 http://www.amstat.org/publications/jcgs/ |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Statistical Association |
publisher.none.fl_str_mv |
American Statistical Association |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132503443767296 |