Computational development of a protein folding predictive tool
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/25490 |
Resumo: | Proteins can range from tens to thousands of amino acids, which leads to a huge number of possible conformations. Of these conformations, few have been tested by natural evolution. Understanding the way this folding is carried out naturally and all the components/forces that are present in it is still an objective today. It was then created in the last decades an area of research called protein structure prediction that aims to determine as precisely as possible the 3D structure of a protein from its sequence. It is then proposed with this thesis to create a tool that allow to predict the structure of any given protein sequence. At an early stage, will be tested three natural proteins (1CTF, 1GAB and 2LO9) from which their structures are known, but is intended that in the future any given sequence can be subsequently translated into the respective folding. The chosen proteins will be simplified by coarse-grained methods, explored in their conformational space through the Markov chain Monte Carlo method with the help of some algorithms and the most interesting candidates will be placed in molecular dynamics simulations to test their stability. The results were obtained with two different tools that are mainly distinguished by the algorithm used - parallel-tempering and ILSRR. In the first tool, the best result was an RMSD of ca. 7 Å, with the 1CTF protein, compared to the reference frame. After some modifications, which led to the creation of the second tool, an RMSD of ca. 4 Å for the same protein has achieved, and other promising results for the other two proteins |
id |
RCAP_325ec7a09aec26bdf6587cf9d231e65a |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/25490 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Computational development of a protein folding predictive toolProtein folding predictionMolecular dynamicsMonte CarloCoarse-Grained MethodsProteins can range from tens to thousands of amino acids, which leads to a huge number of possible conformations. Of these conformations, few have been tested by natural evolution. Understanding the way this folding is carried out naturally and all the components/forces that are present in it is still an objective today. It was then created in the last decades an area of research called protein structure prediction that aims to determine as precisely as possible the 3D structure of a protein from its sequence. It is then proposed with this thesis to create a tool that allow to predict the structure of any given protein sequence. At an early stage, will be tested three natural proteins (1CTF, 1GAB and 2LO9) from which their structures are known, but is intended that in the future any given sequence can be subsequently translated into the respective folding. The chosen proteins will be simplified by coarse-grained methods, explored in their conformational space through the Markov chain Monte Carlo method with the help of some algorithms and the most interesting candidates will be placed in molecular dynamics simulations to test their stability. The results were obtained with two different tools that are mainly distinguished by the algorithm used - parallel-tempering and ILSRR. In the first tool, the best result was an RMSD of ca. 7 Å, with the 1CTF protein, compared to the reference frame. After some modifications, which led to the creation of the second tool, an RMSD of ca. 4 Å for the same protein has achieved, and other promising results for the other two proteinsAs proteínas podem ter desde dezenas a milhares de aminoácidos, o que leva a que haja um enorme número de conformações possíveis. Destas conformações, poucas foram testadas pela Natureza no processo de evolução. Perceber a maneira como este enrolamento é efectuado naturalmente e todas as componentes/forças que nele estão presentes ainda é um objectivo muito pretendido actualmente. Foi então criada nas últimas décadas uma área de investigação chamada previsão de estruturas de proteínas que visa determinar o mais precisamente possível a estrutura 3D de uma proteína a partir da sua sequência. É então proposto com esta tese a criação de ferramentas que permitam prever a estrutura de uma qualquer sequência proteica dada. Numa fase inicial, serão testadas três proteínas naturais (1CTF, 1GAB e 2LO9) e das quais são conhecidas as suas estruturas, mas pretende-se que posteriormente qualquer sequência dada seja traduzida no respectivo folding. As proteínas escolhidas serão simplificadas por métodos coarse-grained, exploradas no seu espaço conformacional através do método Markov chain Monte Carlo com a ajuda de alguns algoritmos e os candidatos mais interessantes serão colocados em simulações de dinâmica molecular de modo a testar a sua estabilidade. Os resultados foram obtidos com duas ferramentas diferentes que se distinguem principalmente no algoritmo usado - parallel-tempering e ILSRR. Na primeira ferramenta o melhor resultado obtido foi um RMSD de ca. 7 Å, com a proteína 1CTF, comparativamente à estrutura de referência. Depois de algumas modificações, que levaram à criação da segunda ferramenta, conseguiu-se atingir um RMSD de ca. 4 Å para a mesma proteína, e outros resultados promissores para as outras duas proteínas2020-12-18T00:00:00Z2018-12-14T00:00:00Z2018-12-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/25490TID:202240835engGonçalves, Luís Pedro Cardosoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:49:34Zoai:ria.ua.pt:10773/25490Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:58:46.348126Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Computational development of a protein folding predictive tool |
title |
Computational development of a protein folding predictive tool |
spellingShingle |
Computational development of a protein folding predictive tool Gonçalves, Luís Pedro Cardoso Protein folding prediction Molecular dynamics Monte Carlo Coarse-Grained Methods |
title_short |
Computational development of a protein folding predictive tool |
title_full |
Computational development of a protein folding predictive tool |
title_fullStr |
Computational development of a protein folding predictive tool |
title_full_unstemmed |
Computational development of a protein folding predictive tool |
title_sort |
Computational development of a protein folding predictive tool |
author |
Gonçalves, Luís Pedro Cardoso |
author_facet |
Gonçalves, Luís Pedro Cardoso |
author_role |
author |
dc.contributor.author.fl_str_mv |
Gonçalves, Luís Pedro Cardoso |
dc.subject.por.fl_str_mv |
Protein folding prediction Molecular dynamics Monte Carlo Coarse-Grained Methods |
topic |
Protein folding prediction Molecular dynamics Monte Carlo Coarse-Grained Methods |
description |
Proteins can range from tens to thousands of amino acids, which leads to a huge number of possible conformations. Of these conformations, few have been tested by natural evolution. Understanding the way this folding is carried out naturally and all the components/forces that are present in it is still an objective today. It was then created in the last decades an area of research called protein structure prediction that aims to determine as precisely as possible the 3D structure of a protein from its sequence. It is then proposed with this thesis to create a tool that allow to predict the structure of any given protein sequence. At an early stage, will be tested three natural proteins (1CTF, 1GAB and 2LO9) from which their structures are known, but is intended that in the future any given sequence can be subsequently translated into the respective folding. The chosen proteins will be simplified by coarse-grained methods, explored in their conformational space through the Markov chain Monte Carlo method with the help of some algorithms and the most interesting candidates will be placed in molecular dynamics simulations to test their stability. The results were obtained with two different tools that are mainly distinguished by the algorithm used - parallel-tempering and ILSRR. In the first tool, the best result was an RMSD of ca. 7 Å, with the 1CTF protein, compared to the reference frame. After some modifications, which led to the creation of the second tool, an RMSD of ca. 4 Å for the same protein has achieved, and other promising results for the other two proteins |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-14T00:00:00Z 2018-12-14 2020-12-18T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/25490 TID:202240835 |
url |
http://hdl.handle.net/10773/25490 |
identifier_str_mv |
TID:202240835 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137641734602752 |