Computational development of a protein folding predictive tool

Detalhes bibliográficos
Autor(a) principal: Gonçalves, Luís Pedro Cardoso
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/25490
Resumo: Proteins can range from tens to thousands of amino acids, which leads to a huge number of possible conformations. Of these conformations, few have been tested by natural evolution. Understanding the way this folding is carried out naturally and all the components/forces that are present in it is still an objective today. It was then created in the last decades an area of research called protein structure prediction that aims to determine as precisely as possible the 3D structure of a protein from its sequence. It is then proposed with this thesis to create a tool that allow to predict the structure of any given protein sequence. At an early stage, will be tested three natural proteins (1CTF, 1GAB and 2LO9) from which their structures are known, but is intended that in the future any given sequence can be subsequently translated into the respective folding. The chosen proteins will be simplified by coarse-grained methods, explored in their conformational space through the Markov chain Monte Carlo method with the help of some algorithms and the most interesting candidates will be placed in molecular dynamics simulations to test their stability. The results were obtained with two different tools that are mainly distinguished by the algorithm used - parallel-tempering and ILSRR. In the first tool, the best result was an RMSD of ca. 7 Å, with the 1CTF protein, compared to the reference frame. After some modifications, which led to the creation of the second tool, an RMSD of ca. 4 Å for the same protein has achieved, and other promising results for the other two proteins
id RCAP_325ec7a09aec26bdf6587cf9d231e65a
oai_identifier_str oai:ria.ua.pt:10773/25490
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Computational development of a protein folding predictive toolProtein folding predictionMolecular dynamicsMonte CarloCoarse-Grained MethodsProteins can range from tens to thousands of amino acids, which leads to a huge number of possible conformations. Of these conformations, few have been tested by natural evolution. Understanding the way this folding is carried out naturally and all the components/forces that are present in it is still an objective today. It was then created in the last decades an area of research called protein structure prediction that aims to determine as precisely as possible the 3D structure of a protein from its sequence. It is then proposed with this thesis to create a tool that allow to predict the structure of any given protein sequence. At an early stage, will be tested three natural proteins (1CTF, 1GAB and 2LO9) from which their structures are known, but is intended that in the future any given sequence can be subsequently translated into the respective folding. The chosen proteins will be simplified by coarse-grained methods, explored in their conformational space through the Markov chain Monte Carlo method with the help of some algorithms and the most interesting candidates will be placed in molecular dynamics simulations to test their stability. The results were obtained with two different tools that are mainly distinguished by the algorithm used - parallel-tempering and ILSRR. In the first tool, the best result was an RMSD of ca. 7 Å, with the 1CTF protein, compared to the reference frame. After some modifications, which led to the creation of the second tool, an RMSD of ca. 4 Å for the same protein has achieved, and other promising results for the other two proteinsAs proteínas podem ter desde dezenas a milhares de aminoácidos, o que leva a que haja um enorme número de conformações possíveis. Destas conformações, poucas foram testadas pela Natureza no processo de evolução. Perceber a maneira como este enrolamento é efectuado naturalmente e todas as componentes/forças que nele estão presentes ainda é um objectivo muito pretendido actualmente. Foi então criada nas últimas décadas uma área de investigação chamada previsão de estruturas de proteínas que visa determinar o mais precisamente possível a estrutura 3D de uma proteína a partir da sua sequência. É então proposto com esta tese a criação de ferramentas que permitam prever a estrutura de uma qualquer sequência proteica dada. Numa fase inicial, serão testadas três proteínas naturais (1CTF, 1GAB e 2LO9) e das quais são conhecidas as suas estruturas, mas pretende-se que posteriormente qualquer sequência dada seja traduzida no respectivo folding. As proteínas escolhidas serão simplificadas por métodos coarse-grained, exploradas no seu espaço conformacional através do método Markov chain Monte Carlo com a ajuda de alguns algoritmos e os candidatos mais interessantes serão colocados em simulações de dinâmica molecular de modo a testar a sua estabilidade. Os resultados foram obtidos com duas ferramentas diferentes que se distinguem principalmente no algoritmo usado - parallel-tempering e ILSRR. Na primeira ferramenta o melhor resultado obtido foi um RMSD de ca. 7 Å, com a proteína 1CTF, comparativamente à estrutura de referência. Depois de algumas modificações, que levaram à criação da segunda ferramenta, conseguiu-se atingir um RMSD de ca. 4 Å para a mesma proteína, e outros resultados promissores para as outras duas proteínas2020-12-18T00:00:00Z2018-12-14T00:00:00Z2018-12-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/25490TID:202240835engGonçalves, Luís Pedro Cardosoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:49:34Zoai:ria.ua.pt:10773/25490Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:58:46.348126Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Computational development of a protein folding predictive tool
title Computational development of a protein folding predictive tool
spellingShingle Computational development of a protein folding predictive tool
Gonçalves, Luís Pedro Cardoso
Protein folding prediction
Molecular dynamics
Monte Carlo
Coarse-Grained Methods
title_short Computational development of a protein folding predictive tool
title_full Computational development of a protein folding predictive tool
title_fullStr Computational development of a protein folding predictive tool
title_full_unstemmed Computational development of a protein folding predictive tool
title_sort Computational development of a protein folding predictive tool
author Gonçalves, Luís Pedro Cardoso
author_facet Gonçalves, Luís Pedro Cardoso
author_role author
dc.contributor.author.fl_str_mv Gonçalves, Luís Pedro Cardoso
dc.subject.por.fl_str_mv Protein folding prediction
Molecular dynamics
Monte Carlo
Coarse-Grained Methods
topic Protein folding prediction
Molecular dynamics
Monte Carlo
Coarse-Grained Methods
description Proteins can range from tens to thousands of amino acids, which leads to a huge number of possible conformations. Of these conformations, few have been tested by natural evolution. Understanding the way this folding is carried out naturally and all the components/forces that are present in it is still an objective today. It was then created in the last decades an area of research called protein structure prediction that aims to determine as precisely as possible the 3D structure of a protein from its sequence. It is then proposed with this thesis to create a tool that allow to predict the structure of any given protein sequence. At an early stage, will be tested three natural proteins (1CTF, 1GAB and 2LO9) from which their structures are known, but is intended that in the future any given sequence can be subsequently translated into the respective folding. The chosen proteins will be simplified by coarse-grained methods, explored in their conformational space through the Markov chain Monte Carlo method with the help of some algorithms and the most interesting candidates will be placed in molecular dynamics simulations to test their stability. The results were obtained with two different tools that are mainly distinguished by the algorithm used - parallel-tempering and ILSRR. In the first tool, the best result was an RMSD of ca. 7 Å, with the 1CTF protein, compared to the reference frame. After some modifications, which led to the creation of the second tool, an RMSD of ca. 4 Å for the same protein has achieved, and other promising results for the other two proteins
publishDate 2018
dc.date.none.fl_str_mv 2018-12-14T00:00:00Z
2018-12-14
2020-12-18T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/25490
TID:202240835
url http://hdl.handle.net/10773/25490
identifier_str_mv TID:202240835
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137641734602752