Measurement and simulation of the magnetocaloric effect induced by demagnetizing fields
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/39747 |
Resumo: | The magnetocaloric effect (MCE) allows for the refrigeration of systems using solid materials rather than gases harmful to the environment. The effect can be induced by geometric effects – the demagnetizing field – possibly being a more efficient process than the conventional method of inducing the magnetocaloric effect. Yet, this method has not been explored by the scientific community. A fully automated device was developed from scratch capable of measuring the magnetocaloric effect induced by this non-conventional method, for temperatures between - 6 and 35 ºC. Automatization of the measurement process involved controlling the temperature of the system, rotation of the refrigerant, data acquisition and subsequent treatment for the extrapolation of the MCE. Furthermore, an implementation of the Finite Element method was constructed completely from scratch, capable of simulating both the non-conventional magnetocaloric effect and the conventional one, and capable of describing the impact of the demagnetizing field on the conventional effect. The Finite Element method is used to solve the Laplace equation which governs the system, allowing for the calculation of the MCE individually for each element. The MCE induced by the demagnetizing fields was observed to have a flatter temperature profile in comparison to the conventional method, and the maximum temperature change observed was around 1.1 ºC, for temperatures between 7 and 15 ºC. The experimental measurements and the numerical predictions were compared and the profile of the measured magnetocaloric effect corresponds with the computational calculations, the numerical predictions being of higher intensity by 0.5 ºC. Also, the implementation of the Finite Element method proved capable of describing the impact of the demagnetizing field on the conventional process of inducing the MCE. |
id |
RCAP_32afdd0324c7ae6452f72b1e0f6d200b |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/39747 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Measurement and simulation of the magnetocaloric effect induced by demagnetizing fieldsMagnetocaloric effectDemagnetizingRefrigerationFinite elementsThe magnetocaloric effect (MCE) allows for the refrigeration of systems using solid materials rather than gases harmful to the environment. The effect can be induced by geometric effects – the demagnetizing field – possibly being a more efficient process than the conventional method of inducing the magnetocaloric effect. Yet, this method has not been explored by the scientific community. A fully automated device was developed from scratch capable of measuring the magnetocaloric effect induced by this non-conventional method, for temperatures between - 6 and 35 ºC. Automatization of the measurement process involved controlling the temperature of the system, rotation of the refrigerant, data acquisition and subsequent treatment for the extrapolation of the MCE. Furthermore, an implementation of the Finite Element method was constructed completely from scratch, capable of simulating both the non-conventional magnetocaloric effect and the conventional one, and capable of describing the impact of the demagnetizing field on the conventional effect. The Finite Element method is used to solve the Laplace equation which governs the system, allowing for the calculation of the MCE individually for each element. The MCE induced by the demagnetizing fields was observed to have a flatter temperature profile in comparison to the conventional method, and the maximum temperature change observed was around 1.1 ºC, for temperatures between 7 and 15 ºC. The experimental measurements and the numerical predictions were compared and the profile of the measured magnetocaloric effect corresponds with the computational calculations, the numerical predictions being of higher intensity by 0.5 ºC. Also, the implementation of the Finite Element method proved capable of describing the impact of the demagnetizing field on the conventional process of inducing the MCE.O efeito magnetocalórico (MCE) permite a refrigeração de sistemas utilizando materiais sólidos ao invés de gases nocivos para o ambiente. Este efeito pode ser induzido por efeitos geométricos – o campo desmagnetizante – sendo potencialmente um processo mais eficiente do que o método convencional para a indução do efeito magnetocalórico. Contudo, esta técnica não foi explorada pela comunidade científica. Desenvolveu-se de raiz um dispositivo completamente automatizado, capaz de medir o efeito magnetocalórico induzido por este método não convencional, para temperaturas entre os - 6 e os 35 ºC. A automatização do processo de medição envolveu o controle da temperatura do sistema, a rotação do refrigerante, a aquisição dos dados e o seu tratamento para a estimativa do MCE. Implementou-se também, de raiz, o método de elementos finitos para simular tanto o efeito magnetocalórico não convencional como o convencional, assim como a descrição do impacto do campo desmagnetizante no efeito convencional. O método de elementos finitos resolve a equação de Laplace que descreve o sistema, permitindo o cálculo individual do MCE de cada elemento. Observou-se um perfil de temperatura do MCE induzido por campo desmagnetizante mais plano em comparação com o método convencional. A variação de temperatura máxima observada foi de aproximadamente 1,1 ºC, para temperaturas entre 7 e os 15 ºC. Compararam-se os resultados das medidas experimentais e as previsões numéricas, mostrando que o perfil da curva do MCE medido corresponde ao calculado computacionalmente, sendo a previsão numérica mais intensa por 0,5 ºC. Adicionalmente, a implementação de elementos finitos prova ser capaz de descrever o impacto do campo desmagnetizante no processo convencional para a indução do MCE.2023-12-04T17:01:19Z2023-09-04T00:00:00Z2023-09-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/39747engOliveira, Rodrigo Kiefe Soares deinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:17:51Zoai:ria.ua.pt:10773/39747Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:09:55.562106Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Measurement and simulation of the magnetocaloric effect induced by demagnetizing fields |
title |
Measurement and simulation of the magnetocaloric effect induced by demagnetizing fields |
spellingShingle |
Measurement and simulation of the magnetocaloric effect induced by demagnetizing fields Oliveira, Rodrigo Kiefe Soares de Magnetocaloric effect Demagnetizing Refrigeration Finite elements |
title_short |
Measurement and simulation of the magnetocaloric effect induced by demagnetizing fields |
title_full |
Measurement and simulation of the magnetocaloric effect induced by demagnetizing fields |
title_fullStr |
Measurement and simulation of the magnetocaloric effect induced by demagnetizing fields |
title_full_unstemmed |
Measurement and simulation of the magnetocaloric effect induced by demagnetizing fields |
title_sort |
Measurement and simulation of the magnetocaloric effect induced by demagnetizing fields |
author |
Oliveira, Rodrigo Kiefe Soares de |
author_facet |
Oliveira, Rodrigo Kiefe Soares de |
author_role |
author |
dc.contributor.author.fl_str_mv |
Oliveira, Rodrigo Kiefe Soares de |
dc.subject.por.fl_str_mv |
Magnetocaloric effect Demagnetizing Refrigeration Finite elements |
topic |
Magnetocaloric effect Demagnetizing Refrigeration Finite elements |
description |
The magnetocaloric effect (MCE) allows for the refrigeration of systems using solid materials rather than gases harmful to the environment. The effect can be induced by geometric effects – the demagnetizing field – possibly being a more efficient process than the conventional method of inducing the magnetocaloric effect. Yet, this method has not been explored by the scientific community. A fully automated device was developed from scratch capable of measuring the magnetocaloric effect induced by this non-conventional method, for temperatures between - 6 and 35 ºC. Automatization of the measurement process involved controlling the temperature of the system, rotation of the refrigerant, data acquisition and subsequent treatment for the extrapolation of the MCE. Furthermore, an implementation of the Finite Element method was constructed completely from scratch, capable of simulating both the non-conventional magnetocaloric effect and the conventional one, and capable of describing the impact of the demagnetizing field on the conventional effect. The Finite Element method is used to solve the Laplace equation which governs the system, allowing for the calculation of the MCE individually for each element. The MCE induced by the demagnetizing fields was observed to have a flatter temperature profile in comparison to the conventional method, and the maximum temperature change observed was around 1.1 ºC, for temperatures between 7 and 15 ºC. The experimental measurements and the numerical predictions were compared and the profile of the measured magnetocaloric effect corresponds with the computational calculations, the numerical predictions being of higher intensity by 0.5 ºC. Also, the implementation of the Finite Element method proved capable of describing the impact of the demagnetizing field on the conventional process of inducing the MCE. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-04T17:01:19Z 2023-09-04T00:00:00Z 2023-09-04 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/39747 |
url |
http://hdl.handle.net/10773/39747 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137749668724736 |