Measurement and simulation of the magnetocaloric effect induced by demagnetizing fields

Detalhes bibliográficos
Autor(a) principal: Oliveira, Rodrigo Kiefe Soares de
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/39747
Resumo: The magnetocaloric effect (MCE) allows for the refrigeration of systems using solid materials rather than gases harmful to the environment. The effect can be induced by geometric effects – the demagnetizing field – possibly being a more efficient process than the conventional method of inducing the magnetocaloric effect. Yet, this method has not been explored by the scientific community. A fully automated device was developed from scratch capable of measuring the magnetocaloric effect induced by this non-conventional method, for temperatures between - 6 and 35 ºC. Automatization of the measurement process involved controlling the temperature of the system, rotation of the refrigerant, data acquisition and subsequent treatment for the extrapolation of the MCE. Furthermore, an implementation of the Finite Element method was constructed completely from scratch, capable of simulating both the non-conventional magnetocaloric effect and the conventional one, and capable of describing the impact of the demagnetizing field on the conventional effect. The Finite Element method is used to solve the Laplace equation which governs the system, allowing for the calculation of the MCE individually for each element. The MCE induced by the demagnetizing fields was observed to have a flatter temperature profile in comparison to the conventional method, and the maximum temperature change observed was around 1.1 ºC, for temperatures between 7 and 15 ºC. The experimental measurements and the numerical predictions were compared and the profile of the measured magnetocaloric effect corresponds with the computational calculations, the numerical predictions being of higher intensity by 0.5 ºC. Also, the implementation of the Finite Element method proved capable of describing the impact of the demagnetizing field on the conventional process of inducing the MCE.
id RCAP_32afdd0324c7ae6452f72b1e0f6d200b
oai_identifier_str oai:ria.ua.pt:10773/39747
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Measurement and simulation of the magnetocaloric effect induced by demagnetizing fieldsMagnetocaloric effectDemagnetizingRefrigerationFinite elementsThe magnetocaloric effect (MCE) allows for the refrigeration of systems using solid materials rather than gases harmful to the environment. The effect can be induced by geometric effects – the demagnetizing field – possibly being a more efficient process than the conventional method of inducing the magnetocaloric effect. Yet, this method has not been explored by the scientific community. A fully automated device was developed from scratch capable of measuring the magnetocaloric effect induced by this non-conventional method, for temperatures between - 6 and 35 ºC. Automatization of the measurement process involved controlling the temperature of the system, rotation of the refrigerant, data acquisition and subsequent treatment for the extrapolation of the MCE. Furthermore, an implementation of the Finite Element method was constructed completely from scratch, capable of simulating both the non-conventional magnetocaloric effect and the conventional one, and capable of describing the impact of the demagnetizing field on the conventional effect. The Finite Element method is used to solve the Laplace equation which governs the system, allowing for the calculation of the MCE individually for each element. The MCE induced by the demagnetizing fields was observed to have a flatter temperature profile in comparison to the conventional method, and the maximum temperature change observed was around 1.1 ºC, for temperatures between 7 and 15 ºC. The experimental measurements and the numerical predictions were compared and the profile of the measured magnetocaloric effect corresponds with the computational calculations, the numerical predictions being of higher intensity by 0.5 ºC. Also, the implementation of the Finite Element method proved capable of describing the impact of the demagnetizing field on the conventional process of inducing the MCE.O efeito magnetocalórico (MCE) permite a refrigeração de sistemas utilizando materiais sólidos ao invés de gases nocivos para o ambiente. Este efeito pode ser induzido por efeitos geométricos – o campo desmagnetizante – sendo potencialmente um processo mais eficiente do que o método convencional para a indução do efeito magnetocalórico. Contudo, esta técnica não foi explorada pela comunidade científica. Desenvolveu-se de raiz um dispositivo completamente automatizado, capaz de medir o efeito magnetocalórico induzido por este método não convencional, para temperaturas entre os - 6 e os 35 ºC. A automatização do processo de medição envolveu o controle da temperatura do sistema, a rotação do refrigerante, a aquisição dos dados e o seu tratamento para a estimativa do MCE. Implementou-se também, de raiz, o método de elementos finitos para simular tanto o efeito magnetocalórico não convencional como o convencional, assim como a descrição do impacto do campo desmagnetizante no efeito convencional. O método de elementos finitos resolve a equação de Laplace que descreve o sistema, permitindo o cálculo individual do MCE de cada elemento. Observou-se um perfil de temperatura do MCE induzido por campo desmagnetizante mais plano em comparação com o método convencional. A variação de temperatura máxima observada foi de aproximadamente 1,1 ºC, para temperaturas entre 7 e os 15 ºC. Compararam-se os resultados das medidas experimentais e as previsões numéricas, mostrando que o perfil da curva do MCE medido corresponde ao calculado computacionalmente, sendo a previsão numérica mais intensa por 0,5 ºC. Adicionalmente, a implementação de elementos finitos prova ser capaz de descrever o impacto do campo desmagnetizante no processo convencional para a indução do MCE.2023-12-04T17:01:19Z2023-09-04T00:00:00Z2023-09-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/39747engOliveira, Rodrigo Kiefe Soares deinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:17:51Zoai:ria.ua.pt:10773/39747Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:09:55.562106Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Measurement and simulation of the magnetocaloric effect induced by demagnetizing fields
title Measurement and simulation of the magnetocaloric effect induced by demagnetizing fields
spellingShingle Measurement and simulation of the magnetocaloric effect induced by demagnetizing fields
Oliveira, Rodrigo Kiefe Soares de
Magnetocaloric effect
Demagnetizing
Refrigeration
Finite elements
title_short Measurement and simulation of the magnetocaloric effect induced by demagnetizing fields
title_full Measurement and simulation of the magnetocaloric effect induced by demagnetizing fields
title_fullStr Measurement and simulation of the magnetocaloric effect induced by demagnetizing fields
title_full_unstemmed Measurement and simulation of the magnetocaloric effect induced by demagnetizing fields
title_sort Measurement and simulation of the magnetocaloric effect induced by demagnetizing fields
author Oliveira, Rodrigo Kiefe Soares de
author_facet Oliveira, Rodrigo Kiefe Soares de
author_role author
dc.contributor.author.fl_str_mv Oliveira, Rodrigo Kiefe Soares de
dc.subject.por.fl_str_mv Magnetocaloric effect
Demagnetizing
Refrigeration
Finite elements
topic Magnetocaloric effect
Demagnetizing
Refrigeration
Finite elements
description The magnetocaloric effect (MCE) allows for the refrigeration of systems using solid materials rather than gases harmful to the environment. The effect can be induced by geometric effects – the demagnetizing field – possibly being a more efficient process than the conventional method of inducing the magnetocaloric effect. Yet, this method has not been explored by the scientific community. A fully automated device was developed from scratch capable of measuring the magnetocaloric effect induced by this non-conventional method, for temperatures between - 6 and 35 ºC. Automatization of the measurement process involved controlling the temperature of the system, rotation of the refrigerant, data acquisition and subsequent treatment for the extrapolation of the MCE. Furthermore, an implementation of the Finite Element method was constructed completely from scratch, capable of simulating both the non-conventional magnetocaloric effect and the conventional one, and capable of describing the impact of the demagnetizing field on the conventional effect. The Finite Element method is used to solve the Laplace equation which governs the system, allowing for the calculation of the MCE individually for each element. The MCE induced by the demagnetizing fields was observed to have a flatter temperature profile in comparison to the conventional method, and the maximum temperature change observed was around 1.1 ºC, for temperatures between 7 and 15 ºC. The experimental measurements and the numerical predictions were compared and the profile of the measured magnetocaloric effect corresponds with the computational calculations, the numerical predictions being of higher intensity by 0.5 ºC. Also, the implementation of the Finite Element method proved capable of describing the impact of the demagnetizing field on the conventional process of inducing the MCE.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-04T17:01:19Z
2023-09-04T00:00:00Z
2023-09-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/39747
url http://hdl.handle.net/10773/39747
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137749668724736