Modeling the compressive strength of geopolymeric binders by gene expression programming-GEP

Detalhes bibliográficos
Autor(a) principal: Nazari, A.
Data de Publicação: 2013
Outros Autores: Pacheco-Torgal, F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/24527
Resumo: GEP has been employed in this work to model the compressive strength of different types of geopolymers through six different schemes. The differences between the models were in their linking functions, number of genes, chromosomes and head sizes. The curing time, Ca(OH)2 content, the amount of superplasticizer, NaOH concentration, mold type, aluminosilicate source and H2O/Na2O molar ratio were the seven input parameters considered in the construction of the models to evaluate the compressive strength of geopolymers. A total number of 399 input-target pairs were collected from the literature, randomly divided into 299 and 100 sets and were trained and tested, respectively. The best performance model had 6 genes, 14 head size, 40 chromosomes and multiplication as linking function. This was shown by the absolute fraction of variance, the absolute percentage error and the root mean square error. These were of 0.9556, 2.4601 and 3.4716 for training phase, respectively and 0.9483, 2.8456 and 3.7959 for testing phase, respectively. However, another model with 7 genes, 12 head size, 30 chromosomes and addition as linking function showed suitable results with the absolute fraction of variance, the absolute percentage error and the root mean square of 0.9547, 2.5665 and 3.4360 for training phase, respectively and 0.9466, 2.8020 and 3.8047 for testing phase, respectively. These models showed that gene expression programming has a strong potential for predicting the compressive strength of different types of geopolymers in the considered range.
id RCAP_336615613dab174ab300ed802c6649ec
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/24527
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Modeling the compressive strength of geopolymeric binders by gene expression programming-GEPGeopolymersCompressive strengthGene expression programmingScience & TechnologyGEP has been employed in this work to model the compressive strength of different types of geopolymers through six different schemes. The differences between the models were in their linking functions, number of genes, chromosomes and head sizes. The curing time, Ca(OH)2 content, the amount of superplasticizer, NaOH concentration, mold type, aluminosilicate source and H2O/Na2O molar ratio were the seven input parameters considered in the construction of the models to evaluate the compressive strength of geopolymers. A total number of 399 input-target pairs were collected from the literature, randomly divided into 299 and 100 sets and were trained and tested, respectively. The best performance model had 6 genes, 14 head size, 40 chromosomes and multiplication as linking function. This was shown by the absolute fraction of variance, the absolute percentage error and the root mean square error. These were of 0.9556, 2.4601 and 3.4716 for training phase, respectively and 0.9483, 2.8456 and 3.7959 for testing phase, respectively. However, another model with 7 genes, 12 head size, 30 chromosomes and addition as linking function showed suitable results with the absolute fraction of variance, the absolute percentage error and the root mean square of 0.9547, 2.5665 and 3.4360 for training phase, respectively and 0.9466, 2.8020 and 3.8047 for testing phase, respectively. These models showed that gene expression programming has a strong potential for predicting the compressive strength of different types of geopolymers in the considered range.ElsevierUniversidade do MinhoNazari, A.Pacheco-Torgal, F.20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/24527eng0957-417410.1016/j.eswa.2013.04.014www.elsevier.com/locate/eswainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:29:34Zoai:repositorium.sdum.uminho.pt:1822/24527Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:24:34.384994Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Modeling the compressive strength of geopolymeric binders by gene expression programming-GEP
title Modeling the compressive strength of geopolymeric binders by gene expression programming-GEP
spellingShingle Modeling the compressive strength of geopolymeric binders by gene expression programming-GEP
Nazari, A.
Geopolymers
Compressive strength
Gene expression programming
Science & Technology
title_short Modeling the compressive strength of geopolymeric binders by gene expression programming-GEP
title_full Modeling the compressive strength of geopolymeric binders by gene expression programming-GEP
title_fullStr Modeling the compressive strength of geopolymeric binders by gene expression programming-GEP
title_full_unstemmed Modeling the compressive strength of geopolymeric binders by gene expression programming-GEP
title_sort Modeling the compressive strength of geopolymeric binders by gene expression programming-GEP
author Nazari, A.
author_facet Nazari, A.
Pacheco-Torgal, F.
author_role author
author2 Pacheco-Torgal, F.
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Nazari, A.
Pacheco-Torgal, F.
dc.subject.por.fl_str_mv Geopolymers
Compressive strength
Gene expression programming
Science & Technology
topic Geopolymers
Compressive strength
Gene expression programming
Science & Technology
description GEP has been employed in this work to model the compressive strength of different types of geopolymers through six different schemes. The differences between the models were in their linking functions, number of genes, chromosomes and head sizes. The curing time, Ca(OH)2 content, the amount of superplasticizer, NaOH concentration, mold type, aluminosilicate source and H2O/Na2O molar ratio were the seven input parameters considered in the construction of the models to evaluate the compressive strength of geopolymers. A total number of 399 input-target pairs were collected from the literature, randomly divided into 299 and 100 sets and were trained and tested, respectively. The best performance model had 6 genes, 14 head size, 40 chromosomes and multiplication as linking function. This was shown by the absolute fraction of variance, the absolute percentage error and the root mean square error. These were of 0.9556, 2.4601 and 3.4716 for training phase, respectively and 0.9483, 2.8456 and 3.7959 for testing phase, respectively. However, another model with 7 genes, 12 head size, 30 chromosomes and addition as linking function showed suitable results with the absolute fraction of variance, the absolute percentage error and the root mean square of 0.9547, 2.5665 and 3.4360 for training phase, respectively and 0.9466, 2.8020 and 3.8047 for testing phase, respectively. These models showed that gene expression programming has a strong potential for predicting the compressive strength of different types of geopolymers in the considered range.
publishDate 2013
dc.date.none.fl_str_mv 2013
2013-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/24527
url http://hdl.handle.net/1822/24527
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0957-4174
10.1016/j.eswa.2013.04.014
www.elsevier.com/locate/eswa
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132726254632960