Force acting on a rough disk spinning in a flow of noninteracting particles
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/6297 |
Resumo: | Pressure force exerted on a rough disk spinning in a flow of noninteracting particles is determined by considering that a flow of point particles impinges on a body spinning around a fixed point. The rough disk is identical with the sequence of sets and thus the sets can be viewed as successive approximations of the rough disk. A proper choice of sequence of sets shows that the characteristic of billiard scattering is independent of n, and the billiard scattering on the rough set is defined. The pressure force exerted on the disk is independent of its angular velocity and that the characteristic of the interaction that is the moment of the pressure force slows down the rotation of the rough disk. The transverse force aligned with the instantaneous velocity of the front point of the body results in Magnus effect. |
id |
RCAP_337e03ac950adfd0db55c218ae0291b4 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/6297 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Force acting on a rough disk spinning in a flow of noninteracting particlesFixed pointsMagnus effectNon-interacting particlesPoint particlePressure forceRough setSuccessive approximationsTransverse forceApproximation theoryDrag reductionSet theoryDisks (structural components)Pressure force exerted on a rough disk spinning in a flow of noninteracting particles is determined by considering that a flow of point particles impinges on a body spinning around a fixed point. The rough disk is identical with the sequence of sets and thus the sets can be viewed as successive approximations of the rough disk. A proper choice of sequence of sets shows that the characteristic of billiard scattering is independent of n, and the billiard scattering on the rough set is defined. The pressure force exerted on the disk is independent of its angular velocity and that the characteristic of the interaction that is the moment of the pressure force slows down the rotation of the rough disk. The transverse force aligned with the instantaneous velocity of the front point of the body results in Magnus effect.20092009-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/6297eng1064-562410.1134/S1064562409010396Plakhov, A. Yu.Tchemisova, T. V.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:09:51Zoai:ria.ua.pt:10773/6297Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:44:05.524778Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Force acting on a rough disk spinning in a flow of noninteracting particles |
title |
Force acting on a rough disk spinning in a flow of noninteracting particles |
spellingShingle |
Force acting on a rough disk spinning in a flow of noninteracting particles Plakhov, A. Yu. Fixed points Magnus effect Non-interacting particles Point particle Pressure force Rough set Successive approximations Transverse force Approximation theory Drag reduction Set theory Disks (structural components) |
title_short |
Force acting on a rough disk spinning in a flow of noninteracting particles |
title_full |
Force acting on a rough disk spinning in a flow of noninteracting particles |
title_fullStr |
Force acting on a rough disk spinning in a flow of noninteracting particles |
title_full_unstemmed |
Force acting on a rough disk spinning in a flow of noninteracting particles |
title_sort |
Force acting on a rough disk spinning in a flow of noninteracting particles |
author |
Plakhov, A. Yu. |
author_facet |
Plakhov, A. Yu. Tchemisova, T. V. |
author_role |
author |
author2 |
Tchemisova, T. V. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Plakhov, A. Yu. Tchemisova, T. V. |
dc.subject.por.fl_str_mv |
Fixed points Magnus effect Non-interacting particles Point particle Pressure force Rough set Successive approximations Transverse force Approximation theory Drag reduction Set theory Disks (structural components) |
topic |
Fixed points Magnus effect Non-interacting particles Point particle Pressure force Rough set Successive approximations Transverse force Approximation theory Drag reduction Set theory Disks (structural components) |
description |
Pressure force exerted on a rough disk spinning in a flow of noninteracting particles is determined by considering that a flow of point particles impinges on a body spinning around a fixed point. The rough disk is identical with the sequence of sets and thus the sets can be viewed as successive approximations of the rough disk. A proper choice of sequence of sets shows that the characteristic of billiard scattering is independent of n, and the billiard scattering on the rough set is defined. The pressure force exerted on the disk is independent of its angular velocity and that the characteristic of the interaction that is the moment of the pressure force slows down the rotation of the rough disk. The transverse force aligned with the instantaneous velocity of the front point of the body results in Magnus effect. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 2009-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/6297 |
url |
http://hdl.handle.net/10773/6297 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1064-5624 10.1134/S1064562409010396 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137491397115904 |