Bayesian prediction in threshold autoregressive models with exponential white noise
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/4433 |
Resumo: | In this paper, we develop a Bayesian analysis of a threshold antoregressive model with exponential noise. An approximate Bayes methodology, which is introduced here; and the Gibbs sampler are used to compute marginal posterior densities for the parameters of the model; including the threshold parameter, and to compute one-step-ahead predictive density functions. The proposed methodology is illustrated with a simulation study and a real example. |
id |
RCAP_33c919e1c5f9ec8aaca793dd53554ade |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/4433 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Bayesian prediction in threshold autoregressive models with exponential white noiseThreshold modelBayesian predictionGibbs samplerIn this paper, we develop a Bayesian analysis of a threshold antoregressive model with exponential noise. An approximate Bayes methodology, which is introduced here; and the Gibbs sampler are used to compute marginal posterior densities for the parameters of the model; including the threshold parameter, and to compute one-step-ahead predictive density functions. The proposed methodology is illustrated with a simulation study and a real example.Springer Verlag2011-11-28T16:19:36Z2004-01-01T00:00:00Z2004info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/4433eng1133-0686Pereira, IMSAmaral-Turkman, MAinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:04:55Zoai:ria.ua.pt:10773/4433Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:42:21.277202Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Bayesian prediction in threshold autoregressive models with exponential white noise |
title |
Bayesian prediction in threshold autoregressive models with exponential white noise |
spellingShingle |
Bayesian prediction in threshold autoregressive models with exponential white noise Pereira, IMS Threshold model Bayesian prediction Gibbs sampler |
title_short |
Bayesian prediction in threshold autoregressive models with exponential white noise |
title_full |
Bayesian prediction in threshold autoregressive models with exponential white noise |
title_fullStr |
Bayesian prediction in threshold autoregressive models with exponential white noise |
title_full_unstemmed |
Bayesian prediction in threshold autoregressive models with exponential white noise |
title_sort |
Bayesian prediction in threshold autoregressive models with exponential white noise |
author |
Pereira, IMS |
author_facet |
Pereira, IMS Amaral-Turkman, MA |
author_role |
author |
author2 |
Amaral-Turkman, MA |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Pereira, IMS Amaral-Turkman, MA |
dc.subject.por.fl_str_mv |
Threshold model Bayesian prediction Gibbs sampler |
topic |
Threshold model Bayesian prediction Gibbs sampler |
description |
In this paper, we develop a Bayesian analysis of a threshold antoregressive model with exponential noise. An approximate Bayes methodology, which is introduced here; and the Gibbs sampler are used to compute marginal posterior densities for the parameters of the model; including the threshold parameter, and to compute one-step-ahead predictive density functions. The proposed methodology is illustrated with a simulation study and a real example. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-01-01T00:00:00Z 2004 2011-11-28T16:19:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/4433 |
url |
http://hdl.handle.net/10773/4433 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1133-0686 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137472244875264 |