Near real-time network analysis for the identification of malicious activity

Detalhes bibliográficos
Autor(a) principal: Oliveira, Rafael Cardoso de
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10198/24947
Resumo: The evolution of technology and the increasing connectivity between devices lead to an increased risk of cyberattacks. Reliable protection systems, such as Intrusion Detection System (IDS) and Intrusion Prevention System (IPS), are essential to try to prevent, detect and counter most of the attacks. However, the increased creativity and type of attacks raise the need for more resources and processing power for the protection systems which, in turn, requires horizontal scalability to keep up with the massive companies’ network infrastructure and with the complexity of attacks. Technologies like machine learning, show promising results and can be of added value in the detection and prevention of attacks in near real-time. But good algorithms and tools are not enough. They require reliable and solid datasets to be able to effectively train the protection systems. The development of a good dataset requires horizontal-scalable, robust, modular and faulttolerant systems so that the analysis may be done in near real-time. This work describes an architecture design for horizontal-scaling capture, storage and analyses, able to collect packets from multiple sources and analyse them in a parallel fashion. The system depends on multiple modular nodes with specific roles to support different algorithms and tools.
id RCAP_33d6b9f911f3df6114b386a968911861
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/24947
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Near real-time network analysis for the identification of malicious activityCybersecurityIDSDistributed-systemsMachine-learningDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaThe evolution of technology and the increasing connectivity between devices lead to an increased risk of cyberattacks. Reliable protection systems, such as Intrusion Detection System (IDS) and Intrusion Prevention System (IPS), are essential to try to prevent, detect and counter most of the attacks. However, the increased creativity and type of attacks raise the need for more resources and processing power for the protection systems which, in turn, requires horizontal scalability to keep up with the massive companies’ network infrastructure and with the complexity of attacks. Technologies like machine learning, show promising results and can be of added value in the detection and prevention of attacks in near real-time. But good algorithms and tools are not enough. They require reliable and solid datasets to be able to effectively train the protection systems. The development of a good dataset requires horizontal-scalable, robust, modular and faulttolerant systems so that the analysis may be done in near real-time. This work describes an architecture design for horizontal-scaling capture, storage and analyses, able to collect packets from multiple sources and analyse them in a parallel fashion. The system depends on multiple modular nodes with specific roles to support different algorithms and tools.A evolução da tecnologia e o aumento da conectividade entre dispositivos, levam a um aumento do risco de ciberataques. Os sistemas de deteção de intrusão são essenciais para tentar prevenir, detetar e conter a maioria dos ataques. No entanto, o aumento da criatividade e do tipo de ataques aumenta a necessidade dos sistemas de proteção possuírem cada vez mais recursos e poder computacional. Por sua vez, requerem escalabilidade horizontal para acompanhar a massiva infraestrutura de rede das empresas e a complexidade dos ataques. Tecnologias como machine learning apresentam resultados promissores e podem ser de grande valor na deteção e prevenção de ataques em tempo útil. No entanto, a utilização dos algoritmos e ferramentas requer sempre um conjunto de dados sólidos e confiáveis para treinar os sistemas de proteção de maneira eficaz. A implementação de um bom conjunto de dados requer sistemas horizontalmente escaláveis, robustos, modulares e tolerantes a falhas para que a análise seja rápida e rigorosa. Este trabalho descreve a arquitetura de um sistema de captura, armazenamento e análise, capaz de capturar pacotes de múltiplas fontes e analisá-los de forma paralela. O sistema depende de vários nós modulares com funções específicas para oferecer suporte a diferentes algoritmos e ferramentas.Pedrosa, TiagoLopes, Rui PedroBiblioteca Digital do IPBOliveira, Rafael Cardoso de2022-01-27T17:24:25Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10198/24947TID:202909727enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-21T10:55:55Zoai:bibliotecadigital.ipb.pt:10198/24947Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:15:44.550323Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Near real-time network analysis for the identification of malicious activity
title Near real-time network analysis for the identification of malicious activity
spellingShingle Near real-time network analysis for the identification of malicious activity
Oliveira, Rafael Cardoso de
Cybersecurity
IDS
Distributed-systems
Machine-learning
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Near real-time network analysis for the identification of malicious activity
title_full Near real-time network analysis for the identification of malicious activity
title_fullStr Near real-time network analysis for the identification of malicious activity
title_full_unstemmed Near real-time network analysis for the identification of malicious activity
title_sort Near real-time network analysis for the identification of malicious activity
author Oliveira, Rafael Cardoso de
author_facet Oliveira, Rafael Cardoso de
author_role author
dc.contributor.none.fl_str_mv Pedrosa, Tiago
Lopes, Rui Pedro
Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Oliveira, Rafael Cardoso de
dc.subject.por.fl_str_mv Cybersecurity
IDS
Distributed-systems
Machine-learning
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Cybersecurity
IDS
Distributed-systems
Machine-learning
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description The evolution of technology and the increasing connectivity between devices lead to an increased risk of cyberattacks. Reliable protection systems, such as Intrusion Detection System (IDS) and Intrusion Prevention System (IPS), are essential to try to prevent, detect and counter most of the attacks. However, the increased creativity and type of attacks raise the need for more resources and processing power for the protection systems which, in turn, requires horizontal scalability to keep up with the massive companies’ network infrastructure and with the complexity of attacks. Technologies like machine learning, show promising results and can be of added value in the detection and prevention of attacks in near real-time. But good algorithms and tools are not enough. They require reliable and solid datasets to be able to effectively train the protection systems. The development of a good dataset requires horizontal-scalable, robust, modular and faulttolerant systems so that the analysis may be done in near real-time. This work describes an architecture design for horizontal-scaling capture, storage and analyses, able to collect packets from multiple sources and analyse them in a parallel fashion. The system depends on multiple modular nodes with specific roles to support different algorithms and tools.
publishDate 2021
dc.date.none.fl_str_mv 2021
2021-01-01T00:00:00Z
2022-01-27T17:24:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/24947
TID:202909727
url http://hdl.handle.net/10198/24947
identifier_str_mv TID:202909727
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135440752607232