Near real-time network analysis for the identification of malicious activity
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10198/24947 |
Resumo: | The evolution of technology and the increasing connectivity between devices lead to an increased risk of cyberattacks. Reliable protection systems, such as Intrusion Detection System (IDS) and Intrusion Prevention System (IPS), are essential to try to prevent, detect and counter most of the attacks. However, the increased creativity and type of attacks raise the need for more resources and processing power for the protection systems which, in turn, requires horizontal scalability to keep up with the massive companies’ network infrastructure and with the complexity of attacks. Technologies like machine learning, show promising results and can be of added value in the detection and prevention of attacks in near real-time. But good algorithms and tools are not enough. They require reliable and solid datasets to be able to effectively train the protection systems. The development of a good dataset requires horizontal-scalable, robust, modular and faulttolerant systems so that the analysis may be done in near real-time. This work describes an architecture design for horizontal-scaling capture, storage and analyses, able to collect packets from multiple sources and analyse them in a parallel fashion. The system depends on multiple modular nodes with specific roles to support different algorithms and tools. |
id |
RCAP_33d6b9f911f3df6114b386a968911861 |
---|---|
oai_identifier_str |
oai:bibliotecadigital.ipb.pt:10198/24947 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Near real-time network analysis for the identification of malicious activityCybersecurityIDSDistributed-systemsMachine-learningDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaThe evolution of technology and the increasing connectivity between devices lead to an increased risk of cyberattacks. Reliable protection systems, such as Intrusion Detection System (IDS) and Intrusion Prevention System (IPS), are essential to try to prevent, detect and counter most of the attacks. However, the increased creativity and type of attacks raise the need for more resources and processing power for the protection systems which, in turn, requires horizontal scalability to keep up with the massive companies’ network infrastructure and with the complexity of attacks. Technologies like machine learning, show promising results and can be of added value in the detection and prevention of attacks in near real-time. But good algorithms and tools are not enough. They require reliable and solid datasets to be able to effectively train the protection systems. The development of a good dataset requires horizontal-scalable, robust, modular and faulttolerant systems so that the analysis may be done in near real-time. This work describes an architecture design for horizontal-scaling capture, storage and analyses, able to collect packets from multiple sources and analyse them in a parallel fashion. The system depends on multiple modular nodes with specific roles to support different algorithms and tools.A evolução da tecnologia e o aumento da conectividade entre dispositivos, levam a um aumento do risco de ciberataques. Os sistemas de deteção de intrusão são essenciais para tentar prevenir, detetar e conter a maioria dos ataques. No entanto, o aumento da criatividade e do tipo de ataques aumenta a necessidade dos sistemas de proteção possuírem cada vez mais recursos e poder computacional. Por sua vez, requerem escalabilidade horizontal para acompanhar a massiva infraestrutura de rede das empresas e a complexidade dos ataques. Tecnologias como machine learning apresentam resultados promissores e podem ser de grande valor na deteção e prevenção de ataques em tempo útil. No entanto, a utilização dos algoritmos e ferramentas requer sempre um conjunto de dados sólidos e confiáveis para treinar os sistemas de proteção de maneira eficaz. A implementação de um bom conjunto de dados requer sistemas horizontalmente escaláveis, robustos, modulares e tolerantes a falhas para que a análise seja rápida e rigorosa. Este trabalho descreve a arquitetura de um sistema de captura, armazenamento e análise, capaz de capturar pacotes de múltiplas fontes e analisá-los de forma paralela. O sistema depende de vários nós modulares com funções específicas para oferecer suporte a diferentes algoritmos e ferramentas.Pedrosa, TiagoLopes, Rui PedroBiblioteca Digital do IPBOliveira, Rafael Cardoso de2022-01-27T17:24:25Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10198/24947TID:202909727enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-21T10:55:55Zoai:bibliotecadigital.ipb.pt:10198/24947Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:15:44.550323Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Near real-time network analysis for the identification of malicious activity |
title |
Near real-time network analysis for the identification of malicious activity |
spellingShingle |
Near real-time network analysis for the identification of malicious activity Oliveira, Rafael Cardoso de Cybersecurity IDS Distributed-systems Machine-learning Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Near real-time network analysis for the identification of malicious activity |
title_full |
Near real-time network analysis for the identification of malicious activity |
title_fullStr |
Near real-time network analysis for the identification of malicious activity |
title_full_unstemmed |
Near real-time network analysis for the identification of malicious activity |
title_sort |
Near real-time network analysis for the identification of malicious activity |
author |
Oliveira, Rafael Cardoso de |
author_facet |
Oliveira, Rafael Cardoso de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pedrosa, Tiago Lopes, Rui Pedro Biblioteca Digital do IPB |
dc.contributor.author.fl_str_mv |
Oliveira, Rafael Cardoso de |
dc.subject.por.fl_str_mv |
Cybersecurity IDS Distributed-systems Machine-learning Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Cybersecurity IDS Distributed-systems Machine-learning Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
The evolution of technology and the increasing connectivity between devices lead to an increased risk of cyberattacks. Reliable protection systems, such as Intrusion Detection System (IDS) and Intrusion Prevention System (IPS), are essential to try to prevent, detect and counter most of the attacks. However, the increased creativity and type of attacks raise the need for more resources and processing power for the protection systems which, in turn, requires horizontal scalability to keep up with the massive companies’ network infrastructure and with the complexity of attacks. Technologies like machine learning, show promising results and can be of added value in the detection and prevention of attacks in near real-time. But good algorithms and tools are not enough. They require reliable and solid datasets to be able to effectively train the protection systems. The development of a good dataset requires horizontal-scalable, robust, modular and faulttolerant systems so that the analysis may be done in near real-time. This work describes an architecture design for horizontal-scaling capture, storage and analyses, able to collect packets from multiple sources and analyse them in a parallel fashion. The system depends on multiple modular nodes with specific roles to support different algorithms and tools. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z 2022-01-27T17:24:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10198/24947 TID:202909727 |
url |
http://hdl.handle.net/10198/24947 |
identifier_str_mv |
TID:202909727 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135440752607232 |