Generating Water Demand Scenarios Using Scaling Laws
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/46677 https://doi.org/10.1016/j.proeng.2014.02.187 |
Resumo: | This paper addresses uncertainty inherent to water demand and proposes an approach to generate demand scenarios and calculate their probability of occurrence. Nodal water demands are modelled as correlated stochastic variables. The parameters which characterize demand vary with spatial and temporal aggregation levels. Scaling laws allow the definition of these parameters for different users and sampling rates. Different scenarios are generated by considering different combinations of demands at each node of the network. A multivariate normal distribution is used to obtain the probability of each demand scenario. Correlation between demands is found to significantly affect the scenarios probabilities. |
id |
RCAP_346d0e7d225910c4a7c0526e67cb8da2 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/46677 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Generating Water Demand Scenarios Using Scaling LawsScalingwater demanddistribution networksrobust optimizationscenariosThis paper addresses uncertainty inherent to water demand and proposes an approach to generate demand scenarios and calculate their probability of occurrence. Nodal water demands are modelled as correlated stochastic variables. The parameters which characterize demand vary with spatial and temporal aggregation levels. Scaling laws allow the definition of these parameters for different users and sampling rates. Different scenarios are generated by considering different combinations of demands at each node of the network. A multivariate normal distribution is used to obtain the probability of each demand scenario. Correlation between demands is found to significantly affect the scenarios probabilities.Elsevier2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/46677http://hdl.handle.net/10316/46677https://doi.org/10.1016/j.proeng.2014.02.187enghttps://www.sciencedirect.com/science/article/pii/S1877705814001891Vertommen, I.Magini, R.Cunha, M. da Conceiçãoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-11-09T09:37:23Zoai:estudogeral.uc.pt:10316/46677Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:57:18.224816Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Generating Water Demand Scenarios Using Scaling Laws |
title |
Generating Water Demand Scenarios Using Scaling Laws |
spellingShingle |
Generating Water Demand Scenarios Using Scaling Laws Vertommen, I. Scaling water demand distribution networks robust optimization scenarios |
title_short |
Generating Water Demand Scenarios Using Scaling Laws |
title_full |
Generating Water Demand Scenarios Using Scaling Laws |
title_fullStr |
Generating Water Demand Scenarios Using Scaling Laws |
title_full_unstemmed |
Generating Water Demand Scenarios Using Scaling Laws |
title_sort |
Generating Water Demand Scenarios Using Scaling Laws |
author |
Vertommen, I. |
author_facet |
Vertommen, I. Magini, R. Cunha, M. da Conceição |
author_role |
author |
author2 |
Magini, R. Cunha, M. da Conceição |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Vertommen, I. Magini, R. Cunha, M. da Conceição |
dc.subject.por.fl_str_mv |
Scaling water demand distribution networks robust optimization scenarios |
topic |
Scaling water demand distribution networks robust optimization scenarios |
description |
This paper addresses uncertainty inherent to water demand and proposes an approach to generate demand scenarios and calculate their probability of occurrence. Nodal water demands are modelled as correlated stochastic variables. The parameters which characterize demand vary with spatial and temporal aggregation levels. Scaling laws allow the definition of these parameters for different users and sampling rates. Different scenarios are generated by considering different combinations of demands at each node of the network. A multivariate normal distribution is used to obtain the probability of each demand scenario. Correlation between demands is found to significantly affect the scenarios probabilities. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/46677 http://hdl.handle.net/10316/46677 https://doi.org/10.1016/j.proeng.2014.02.187 |
url |
http://hdl.handle.net/10316/46677 https://doi.org/10.1016/j.proeng.2014.02.187 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1877705814001891 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133861585616896 |