Reconstruction Algorithms in Compressive Sensing: An Overview
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Livro |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://repositorio-aberto.up.pt/handle/10216/85157 |
Resumo: | The theory Compressive Sensing (CS) has provided a newacquisition strategy and recovery with good in the image processing area.This theory guarantees to recover a signal with high probability from areduced sampling rate below the Nyquist-Shannon limit. The problem ofrecovering the original signal from the samples consists in solving an optimizationproblem. This article presents an overview of reconstructionalgorithms for sparse signal recovery in CS, these algorithms may bebroadly divided into six types. We have provided a comprehensive surveyof the numerous reconstruction algorithms in CS aiming to achievecomputational efficiency |
id |
RCAP_34deb5689a3226d6da74a33f621fd80c |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/85157 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Reconstruction Algorithms in Compressive Sensing: An OverviewCiências Tecnológicas, Ciências da engenharia e tecnologiasTechnological sciences, Engineering and technologyThe theory Compressive Sensing (CS) has provided a newacquisition strategy and recovery with good in the image processing area.This theory guarantees to recover a signal with high probability from areduced sampling rate below the Nyquist-Shannon limit. The problem ofrecovering the original signal from the samples consists in solving an optimizationproblem. This article presents an overview of reconstructionalgorithms for sparse signal recovery in CS, these algorithms may bebroadly divided into six types. We have provided a comprehensive surveyof the numerous reconstruction algorithms in CS aiming to achievecomputational efficiency2016-02-032016-02-03T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://repositorio-aberto.up.pt/handle/10216/85157engAndré Luiz PilastriJoão Manuel R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T14:48:25Zoai:repositorio-aberto.up.pt:10216/85157Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:08:57.360529Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Reconstruction Algorithms in Compressive Sensing: An Overview |
title |
Reconstruction Algorithms in Compressive Sensing: An Overview |
spellingShingle |
Reconstruction Algorithms in Compressive Sensing: An Overview André Luiz Pilastri Ciências Tecnológicas, Ciências da engenharia e tecnologias Technological sciences, Engineering and technology |
title_short |
Reconstruction Algorithms in Compressive Sensing: An Overview |
title_full |
Reconstruction Algorithms in Compressive Sensing: An Overview |
title_fullStr |
Reconstruction Algorithms in Compressive Sensing: An Overview |
title_full_unstemmed |
Reconstruction Algorithms in Compressive Sensing: An Overview |
title_sort |
Reconstruction Algorithms in Compressive Sensing: An Overview |
author |
André Luiz Pilastri |
author_facet |
André Luiz Pilastri João Manuel R. S. Tavares |
author_role |
author |
author2 |
João Manuel R. S. Tavares |
author2_role |
author |
dc.contributor.author.fl_str_mv |
André Luiz Pilastri João Manuel R. S. Tavares |
dc.subject.por.fl_str_mv |
Ciências Tecnológicas, Ciências da engenharia e tecnologias Technological sciences, Engineering and technology |
topic |
Ciências Tecnológicas, Ciências da engenharia e tecnologias Technological sciences, Engineering and technology |
description |
The theory Compressive Sensing (CS) has provided a newacquisition strategy and recovery with good in the image processing area.This theory guarantees to recover a signal with high probability from areduced sampling rate below the Nyquist-Shannon limit. The problem ofrecovering the original signal from the samples consists in solving an optimizationproblem. This article presents an overview of reconstructionalgorithms for sparse signal recovery in CS, these algorithms may bebroadly divided into six types. We have provided a comprehensive surveyof the numerous reconstruction algorithms in CS aiming to achievecomputational efficiency |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-02-03 2016-02-03T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/book |
format |
book |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio-aberto.up.pt/handle/10216/85157 |
url |
https://repositorio-aberto.up.pt/handle/10216/85157 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136014945484800 |