Aquaculture wastewater treatment through microalgal: biomass potential applications on animal feed, agriculture, and energy

Detalhes bibliográficos
Autor(a) principal: Viegas, Catarina
Data de Publicação: 2021
Outros Autores: Gouveia, Luisa, Gonçalves, Maria Margarida
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.9/3619
Resumo: ABSTRACT: The use of microalgae to remediate raw effluent from brown crab aquaculture was evaluated by performing batch mode growth tests using separately the microalgae Chlorella vulgaris (Cv), Scenedesmus obliquus (Sc), Isochrysis galbana (Ig), Nannocloropsis salina (Ns), and Spirulina major (Sp). Removal efficiencies in batch growth were 100% for total nitrogen and total phosphorus for all microalgae. Chemical oxygen demand (COD) remediations were all above 72%. Biomass productivity varied from 20.9 mg L-1 day- 1 (N. salina) to 146.4 mg L-1 day- 1 (C. vulgaris). The two best performing algae were C. vulgaris and S. obliquus and they were tested in semicontinuous growth, reaching productivities of 879.8 mg L-1 day- 1 and 811.7 mg L-1 day- 1, respectively. The bioremediation of the effluent was tested with a transfer system consisting of three independent containers and compared with the use of a single container. The single container had the same capacity and received weekly the same volume of effluent as the three containers together. The remediation capacity of the 3 containers was much higher than the single one. The supplementation with NaNO3 was tested to improve the nutrient removal microalgae? capacity, with positive results. The removal efficiencies were 100% for total nitrogen and total phosphorus and higher than 96% for COD. The obtained C. vulgaris and S. obliquus biomass were composed of 31 and 35% proteins, 6 and 8% lipids, 39 and 30% carbohydrates, respectively. The composition of these biomass suggest that it can be used as novel and sustainable ingredients in aquaculture feeds. The algal biomass of Cv and Sc were used as biostimulants in the germination of wheat and watercress, and very promising results were attained, with increases in the germination index for Cv and Sc of 175% and 48% in watercress and 84% and 98% in wheat, respectively. The biomasses of Cv and Sc were also subjected to a torrefaction process with 72.5 ? 1.7% char yields. The obtained biochars were tested as biostimulants for germination seeds (wheat and watercress) and as bio-adsorbent of dye solutions.
id RCAP_3530bfbe9028b2f570a683bd9d2a80b3
oai_identifier_str oai:repositorio.lneg.pt:10400.9/3619
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Aquaculture wastewater treatment through microalgal: biomass potential applications on animal feed, agriculture, and energyMicroalgaeBioremediationAquaculture wastewaterBiostimulantAdsorptionABSTRACT: The use of microalgae to remediate raw effluent from brown crab aquaculture was evaluated by performing batch mode growth tests using separately the microalgae Chlorella vulgaris (Cv), Scenedesmus obliquus (Sc), Isochrysis galbana (Ig), Nannocloropsis salina (Ns), and Spirulina major (Sp). Removal efficiencies in batch growth were 100% for total nitrogen and total phosphorus for all microalgae. Chemical oxygen demand (COD) remediations were all above 72%. Biomass productivity varied from 20.9 mg L-1 day- 1 (N. salina) to 146.4 mg L-1 day- 1 (C. vulgaris). The two best performing algae were C. vulgaris and S. obliquus and they were tested in semicontinuous growth, reaching productivities of 879.8 mg L-1 day- 1 and 811.7 mg L-1 day- 1, respectively. The bioremediation of the effluent was tested with a transfer system consisting of three independent containers and compared with the use of a single container. The single container had the same capacity and received weekly the same volume of effluent as the three containers together. The remediation capacity of the 3 containers was much higher than the single one. The supplementation with NaNO3 was tested to improve the nutrient removal microalgae? capacity, with positive results. The removal efficiencies were 100% for total nitrogen and total phosphorus and higher than 96% for COD. The obtained C. vulgaris and S. obliquus biomass were composed of 31 and 35% proteins, 6 and 8% lipids, 39 and 30% carbohydrates, respectively. The composition of these biomass suggest that it can be used as novel and sustainable ingredients in aquaculture feeds. The algal biomass of Cv and Sc were used as biostimulants in the germination of wheat and watercress, and very promising results were attained, with increases in the germination index for Cv and Sc of 175% and 48% in watercress and 84% and 98% in wheat, respectively. The biomasses of Cv and Sc were also subjected to a torrefaction process with 72.5 ? 1.7% char yields. The obtained biochars were tested as biostimulants for germination seeds (wheat and watercress) and as bio-adsorbent of dye solutions.ElsevierRepositório do LNEGViegas, CatarinaGouveia, LuisaGonçalves, Maria Margarida2021-11-25T15:45:16Z2021-05-01T00:00:00Z2021-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.9/3619engViegas, Catarina... [et.al.] - Aquaculture wastewater treatment through microalgal: biomass potential applications on animal feed, agriculture, and energy. In: Journal of Environmental Management, 2021, Vol. 286, article nº 1121870301-479710.1016/j.jenvman.2021.1121871095-8630info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-06T12:29:18Zoai:repositorio.lneg.pt:10400.9/3619Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:36:49.654224Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Aquaculture wastewater treatment through microalgal: biomass potential applications on animal feed, agriculture, and energy
title Aquaculture wastewater treatment through microalgal: biomass potential applications on animal feed, agriculture, and energy
spellingShingle Aquaculture wastewater treatment through microalgal: biomass potential applications on animal feed, agriculture, and energy
Viegas, Catarina
Microalgae
Bioremediation
Aquaculture wastewater
Biostimulant
Adsorption
title_short Aquaculture wastewater treatment through microalgal: biomass potential applications on animal feed, agriculture, and energy
title_full Aquaculture wastewater treatment through microalgal: biomass potential applications on animal feed, agriculture, and energy
title_fullStr Aquaculture wastewater treatment through microalgal: biomass potential applications on animal feed, agriculture, and energy
title_full_unstemmed Aquaculture wastewater treatment through microalgal: biomass potential applications on animal feed, agriculture, and energy
title_sort Aquaculture wastewater treatment through microalgal: biomass potential applications on animal feed, agriculture, and energy
author Viegas, Catarina
author_facet Viegas, Catarina
Gouveia, Luisa
Gonçalves, Maria Margarida
author_role author
author2 Gouveia, Luisa
Gonçalves, Maria Margarida
author2_role author
author
dc.contributor.none.fl_str_mv Repositório do LNEG
dc.contributor.author.fl_str_mv Viegas, Catarina
Gouveia, Luisa
Gonçalves, Maria Margarida
dc.subject.por.fl_str_mv Microalgae
Bioremediation
Aquaculture wastewater
Biostimulant
Adsorption
topic Microalgae
Bioremediation
Aquaculture wastewater
Biostimulant
Adsorption
description ABSTRACT: The use of microalgae to remediate raw effluent from brown crab aquaculture was evaluated by performing batch mode growth tests using separately the microalgae Chlorella vulgaris (Cv), Scenedesmus obliquus (Sc), Isochrysis galbana (Ig), Nannocloropsis salina (Ns), and Spirulina major (Sp). Removal efficiencies in batch growth were 100% for total nitrogen and total phosphorus for all microalgae. Chemical oxygen demand (COD) remediations were all above 72%. Biomass productivity varied from 20.9 mg L-1 day- 1 (N. salina) to 146.4 mg L-1 day- 1 (C. vulgaris). The two best performing algae were C. vulgaris and S. obliquus and they were tested in semicontinuous growth, reaching productivities of 879.8 mg L-1 day- 1 and 811.7 mg L-1 day- 1, respectively. The bioremediation of the effluent was tested with a transfer system consisting of three independent containers and compared with the use of a single container. The single container had the same capacity and received weekly the same volume of effluent as the three containers together. The remediation capacity of the 3 containers was much higher than the single one. The supplementation with NaNO3 was tested to improve the nutrient removal microalgae? capacity, with positive results. The removal efficiencies were 100% for total nitrogen and total phosphorus and higher than 96% for COD. The obtained C. vulgaris and S. obliquus biomass were composed of 31 and 35% proteins, 6 and 8% lipids, 39 and 30% carbohydrates, respectively. The composition of these biomass suggest that it can be used as novel and sustainable ingredients in aquaculture feeds. The algal biomass of Cv and Sc were used as biostimulants in the germination of wheat and watercress, and very promising results were attained, with increases in the germination index for Cv and Sc of 175% and 48% in watercress and 84% and 98% in wheat, respectively. The biomasses of Cv and Sc were also subjected to a torrefaction process with 72.5 ? 1.7% char yields. The obtained biochars were tested as biostimulants for germination seeds (wheat and watercress) and as bio-adsorbent of dye solutions.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-25T15:45:16Z
2021-05-01T00:00:00Z
2021-05-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.9/3619
url http://hdl.handle.net/10400.9/3619
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Viegas, Catarina... [et.al.] - Aquaculture wastewater treatment through microalgal: biomass potential applications on animal feed, agriculture, and energy. In: Journal of Environmental Management, 2021, Vol. 286, article nº 112187
0301-4797
10.1016/j.jenvman.2021.112187
1095-8630
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1817552681009414144