Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data

Detalhes bibliográficos
Autor(a) principal: Ribeiro, Ricardo
Data de Publicação: 2011
Outros Autores: Marinho, Rui, Velosa, José, Ramalho, Fernando, Sanches, João
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.21/3014
Resumo: In this work the identification and diagnosis of various stages of chronic liver disease is addressed. The classification results of a support vector machine, a decision tree and a k-nearest neighbor classifier are compared. Ultrasound image intensity and textural features are jointly used with clinical and laboratorial data in the staging process. The classifiers training is performed by using a population of 97 patients at six different stages of chronic liver disease and a leave-one-out cross-validation strategy. The best results are obtained using the support vector machine with a radial-basis kernel, with 73.20% of overall accuracy. The good performance of the method is a promising indicator that it can be used, in a non invasive way, to provide reliable information about the chronic liver disease staging.
id RCAP_3578bc4f48d73ba8c3db1b85d69f569d
oai_identifier_str oai:repositorio.ipl.pt:10400.21/3014
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Chronic liver disease staging classification based on ultrasound, clinical and laboratorial dataChronic liver diseaseClassificationTissue characterizationUltrasoundBiomedical imagingFeature extractionSupport vector machinesUltrasonic imagingIn this work the identification and diagnosis of various stages of chronic liver disease is addressed. The classification results of a support vector machine, a decision tree and a k-nearest neighbor classifier are compared. Ultrasound image intensity and textural features are jointly used with clinical and laboratorial data in the staging process. The classifiers training is performed by using a population of 97 patients at six different stages of chronic liver disease and a leave-one-out cross-validation strategy. The best results are obtained using the support vector machine with a radial-basis kernel, with 73.20% of overall accuracy. The good performance of the method is a promising indicator that it can be used, in a non invasive way, to provide reliable information about the chronic liver disease staging.IEEERCIPLRibeiro, RicardoMarinho, RuiVelosa, JoséRamalho, FernandoSanches, João2013-12-16T18:29:10Z20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/3014engRibeiro R, Marinho R, Velosa J, Ramalho F, Sanches J. Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data. In From Nano to Macro, 2011 IEEE International Symposium on Biomedical Imaging. IEEE; 2011. p. 707-10.978-1-4244-4128-0info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T09:43:06Zoai:repositorio.ipl.pt:10400.21/3014Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:12:41.241618Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data
title Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data
spellingShingle Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data
Ribeiro, Ricardo
Chronic liver disease
Classification
Tissue characterization
Ultrasound
Biomedical imaging
Feature extraction
Support vector machines
Ultrasonic imaging
title_short Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data
title_full Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data
title_fullStr Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data
title_full_unstemmed Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data
title_sort Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data
author Ribeiro, Ricardo
author_facet Ribeiro, Ricardo
Marinho, Rui
Velosa, José
Ramalho, Fernando
Sanches, João
author_role author
author2 Marinho, Rui
Velosa, José
Ramalho, Fernando
Sanches, João
author2_role author
author
author
author
dc.contributor.none.fl_str_mv RCIPL
dc.contributor.author.fl_str_mv Ribeiro, Ricardo
Marinho, Rui
Velosa, José
Ramalho, Fernando
Sanches, João
dc.subject.por.fl_str_mv Chronic liver disease
Classification
Tissue characterization
Ultrasound
Biomedical imaging
Feature extraction
Support vector machines
Ultrasonic imaging
topic Chronic liver disease
Classification
Tissue characterization
Ultrasound
Biomedical imaging
Feature extraction
Support vector machines
Ultrasonic imaging
description In this work the identification and diagnosis of various stages of chronic liver disease is addressed. The classification results of a support vector machine, a decision tree and a k-nearest neighbor classifier are compared. Ultrasound image intensity and textural features are jointly used with clinical and laboratorial data in the staging process. The classifiers training is performed by using a population of 97 patients at six different stages of chronic liver disease and a leave-one-out cross-validation strategy. The best results are obtained using the support vector machine with a radial-basis kernel, with 73.20% of overall accuracy. The good performance of the method is a promising indicator that it can be used, in a non invasive way, to provide reliable information about the chronic liver disease staging.
publishDate 2011
dc.date.none.fl_str_mv 2011
2011-01-01T00:00:00Z
2013-12-16T18:29:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.21/3014
url http://hdl.handle.net/10400.21/3014
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ribeiro R, Marinho R, Velosa J, Ramalho F, Sanches J. Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data. In From Nano to Macro, 2011 IEEE International Symposium on Biomedical Imaging. IEEE; 2011. p. 707-10.
978-1-4244-4128-0
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133382796378112