Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.21/3014 |
Resumo: | In this work the identification and diagnosis of various stages of chronic liver disease is addressed. The classification results of a support vector machine, a decision tree and a k-nearest neighbor classifier are compared. Ultrasound image intensity and textural features are jointly used with clinical and laboratorial data in the staging process. The classifiers training is performed by using a population of 97 patients at six different stages of chronic liver disease and a leave-one-out cross-validation strategy. The best results are obtained using the support vector machine with a radial-basis kernel, with 73.20% of overall accuracy. The good performance of the method is a promising indicator that it can be used, in a non invasive way, to provide reliable information about the chronic liver disease staging. |
id |
RCAP_3578bc4f48d73ba8c3db1b85d69f569d |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/3014 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Chronic liver disease staging classification based on ultrasound, clinical and laboratorial dataChronic liver diseaseClassificationTissue characterizationUltrasoundBiomedical imagingFeature extractionSupport vector machinesUltrasonic imagingIn this work the identification and diagnosis of various stages of chronic liver disease is addressed. The classification results of a support vector machine, a decision tree and a k-nearest neighbor classifier are compared. Ultrasound image intensity and textural features are jointly used with clinical and laboratorial data in the staging process. The classifiers training is performed by using a population of 97 patients at six different stages of chronic liver disease and a leave-one-out cross-validation strategy. The best results are obtained using the support vector machine with a radial-basis kernel, with 73.20% of overall accuracy. The good performance of the method is a promising indicator that it can be used, in a non invasive way, to provide reliable information about the chronic liver disease staging.IEEERCIPLRibeiro, RicardoMarinho, RuiVelosa, JoséRamalho, FernandoSanches, João2013-12-16T18:29:10Z20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/3014engRibeiro R, Marinho R, Velosa J, Ramalho F, Sanches J. Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data. In From Nano to Macro, 2011 IEEE International Symposium on Biomedical Imaging. IEEE; 2011. p. 707-10.978-1-4244-4128-0info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T09:43:06Zoai:repositorio.ipl.pt:10400.21/3014Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:12:41.241618Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data |
title |
Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data |
spellingShingle |
Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data Ribeiro, Ricardo Chronic liver disease Classification Tissue characterization Ultrasound Biomedical imaging Feature extraction Support vector machines Ultrasonic imaging |
title_short |
Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data |
title_full |
Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data |
title_fullStr |
Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data |
title_full_unstemmed |
Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data |
title_sort |
Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data |
author |
Ribeiro, Ricardo |
author_facet |
Ribeiro, Ricardo Marinho, Rui Velosa, José Ramalho, Fernando Sanches, João |
author_role |
author |
author2 |
Marinho, Rui Velosa, José Ramalho, Fernando Sanches, João |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
RCIPL |
dc.contributor.author.fl_str_mv |
Ribeiro, Ricardo Marinho, Rui Velosa, José Ramalho, Fernando Sanches, João |
dc.subject.por.fl_str_mv |
Chronic liver disease Classification Tissue characterization Ultrasound Biomedical imaging Feature extraction Support vector machines Ultrasonic imaging |
topic |
Chronic liver disease Classification Tissue characterization Ultrasound Biomedical imaging Feature extraction Support vector machines Ultrasonic imaging |
description |
In this work the identification and diagnosis of various stages of chronic liver disease is addressed. The classification results of a support vector machine, a decision tree and a k-nearest neighbor classifier are compared. Ultrasound image intensity and textural features are jointly used with clinical and laboratorial data in the staging process. The classifiers training is performed by using a population of 97 patients at six different stages of chronic liver disease and a leave-one-out cross-validation strategy. The best results are obtained using the support vector machine with a radial-basis kernel, with 73.20% of overall accuracy. The good performance of the method is a promising indicator that it can be used, in a non invasive way, to provide reliable information about the chronic liver disease staging. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 2011-01-01T00:00:00Z 2013-12-16T18:29:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/3014 |
url |
http://hdl.handle.net/10400.21/3014 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ribeiro R, Marinho R, Velosa J, Ramalho F, Sanches J. Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data. In From Nano to Macro, 2011 IEEE International Symposium on Biomedical Imaging. IEEE; 2011. p. 707-10. 978-1-4244-4128-0 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133382796378112 |