Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/23314 https://doi.org/10.1515/forj-2015-0007 |
Resumo: | The fine roots are considered the key organs for plant survival, growth and productivity. Measurement of fine roots variables is easily and conveniently achieved by means of digital image. The descriptive variables like root area, surface, total length and diameter distribution may be obtained from the image. Analysis of digital image consists from several steps, each of them represents potential source of the error. In this article we want to evaluate the automatic thresholding and its impact on principal variables obtainable from digital scans of the fine roots. We compare 16 different thresholding methods and compare them with the human processed binary images of roots of cork oak (Quercus suber L.). We found some of the thresholding methods perform significantly better than others in the estimation of total projected area however the length estimation error points out a little different order of accurac |
id |
RCAP_35ba3fa601845e9f98a9d16b9cf67ab1 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/23314 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plantsfine rootsdigital imageautomatic thresholdingThe fine roots are considered the key organs for plant survival, growth and productivity. Measurement of fine roots variables is easily and conveniently achieved by means of digital image. The descriptive variables like root area, surface, total length and diameter distribution may be obtained from the image. Analysis of digital image consists from several steps, each of them represents potential source of the error. In this article we want to evaluate the automatic thresholding and its impact on principal variables obtainable from digital scans of the fine roots. We compare 16 different thresholding methods and compare them with the human processed binary images of roots of cork oak (Quercus suber L.). We found some of the thresholding methods perform significantly better than others in the estimation of total projected area however the length estimation error points out a little different order of accuracLesnick casopis - Forestry journal2018-07-17T12:01:51Z2018-07-172014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/23314http://hdl.handle.net/10174/23314https://doi.org/10.1515/forj-2015-0007porP Surový et al. / Lesn. Cas. For. J. 60 (2014) 244–249psurovy@uevora.ptcd@uevora.ptndnmcar@uevora.ptSurový, PDinis, CMarusak, RRibeiro, NAinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:15:13Zoai:dspace.uevora.pt:10174/23314Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:14:06.053929Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants |
title |
Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants |
spellingShingle |
Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants Surový, P fine roots digital image automatic thresholding |
title_short |
Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants |
title_full |
Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants |
title_fullStr |
Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants |
title_full_unstemmed |
Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants |
title_sort |
Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants |
author |
Surový, P |
author_facet |
Surový, P Dinis, C Marusak, R Ribeiro, NA |
author_role |
author |
author2 |
Dinis, C Marusak, R Ribeiro, NA |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Surový, P Dinis, C Marusak, R Ribeiro, NA |
dc.subject.por.fl_str_mv |
fine roots digital image automatic thresholding |
topic |
fine roots digital image automatic thresholding |
description |
The fine roots are considered the key organs for plant survival, growth and productivity. Measurement of fine roots variables is easily and conveniently achieved by means of digital image. The descriptive variables like root area, surface, total length and diameter distribution may be obtained from the image. Analysis of digital image consists from several steps, each of them represents potential source of the error. In this article we want to evaluate the automatic thresholding and its impact on principal variables obtainable from digital scans of the fine roots. We compare 16 different thresholding methods and compare them with the human processed binary images of roots of cork oak (Quercus suber L.). We found some of the thresholding methods perform significantly better than others in the estimation of total projected area however the length estimation error points out a little different order of accurac |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01-01T00:00:00Z 2018-07-17T12:01:51Z 2018-07-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/23314 http://hdl.handle.net/10174/23314 https://doi.org/10.1515/forj-2015-0007 |
url |
http://hdl.handle.net/10174/23314 https://doi.org/10.1515/forj-2015-0007 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
P Surový et al. / Lesn. Cas. For. J. 60 (2014) 244–249 psurovy@uevora.pt cd@uevora.pt nd nmcar@uevora.pt |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Lesnick casopis - Forestry journal |
publisher.none.fl_str_mv |
Lesnick casopis - Forestry journal |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136622939209728 |