Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants

Detalhes bibliográficos
Autor(a) principal: Surový, P
Data de Publicação: 2014
Outros Autores: Dinis, C, Marusak, R, Ribeiro, NA
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/23314
https://doi.org/10.1515/forj-2015-0007
Resumo: The fine roots are considered the key organs for plant survival, growth and productivity. Measurement of fine roots variables is easily and conveniently achieved by means of digital image. The descriptive variables like root area, surface, total length and diameter distribution may be obtained from the image. Analysis of digital image consists from several steps, each of them represents potential source of the error. In this article we want to evaluate the automatic thresholding and its impact on principal variables obtainable from digital scans of the fine roots. We compare 16 different thresholding methods and compare them with the human processed binary images of roots of cork oak (Quercus suber L.). We found some of the thresholding methods perform significantly better than others in the estimation of total projected area however the length estimation error points out a little different order of accurac
id RCAP_35ba3fa601845e9f98a9d16b9cf67ab1
oai_identifier_str oai:dspace.uevora.pt:10174/23314
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plantsfine rootsdigital imageautomatic thresholdingThe fine roots are considered the key organs for plant survival, growth and productivity. Measurement of fine roots variables is easily and conveniently achieved by means of digital image. The descriptive variables like root area, surface, total length and diameter distribution may be obtained from the image. Analysis of digital image consists from several steps, each of them represents potential source of the error. In this article we want to evaluate the automatic thresholding and its impact on principal variables obtainable from digital scans of the fine roots. We compare 16 different thresholding methods and compare them with the human processed binary images of roots of cork oak (Quercus suber L.). We found some of the thresholding methods perform significantly better than others in the estimation of total projected area however the length estimation error points out a little different order of accuracLesnick casopis - Forestry journal2018-07-17T12:01:51Z2018-07-172014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/23314http://hdl.handle.net/10174/23314https://doi.org/10.1515/forj-2015-0007porP Surový et al. / Lesn. Cas. For. J. 60 (2014) 244–249psurovy@uevora.ptcd@uevora.ptndnmcar@uevora.ptSurový, PDinis, CMarusak, RRibeiro, NAinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:15:13Zoai:dspace.uevora.pt:10174/23314Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:14:06.053929Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants
title Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants
spellingShingle Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants
Surový, P
fine roots
digital image
automatic thresholding
title_short Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants
title_full Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants
title_fullStr Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants
title_full_unstemmed Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants
title_sort Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants
author Surový, P
author_facet Surový, P
Dinis, C
Marusak, R
Ribeiro, NA
author_role author
author2 Dinis, C
Marusak, R
Ribeiro, NA
author2_role author
author
author
dc.contributor.author.fl_str_mv Surový, P
Dinis, C
Marusak, R
Ribeiro, NA
dc.subject.por.fl_str_mv fine roots
digital image
automatic thresholding
topic fine roots
digital image
automatic thresholding
description The fine roots are considered the key organs for plant survival, growth and productivity. Measurement of fine roots variables is easily and conveniently achieved by means of digital image. The descriptive variables like root area, surface, total length and diameter distribution may be obtained from the image. Analysis of digital image consists from several steps, each of them represents potential source of the error. In this article we want to evaluate the automatic thresholding and its impact on principal variables obtainable from digital scans of the fine roots. We compare 16 different thresholding methods and compare them with the human processed binary images of roots of cork oak (Quercus suber L.). We found some of the thresholding methods perform significantly better than others in the estimation of total projected area however the length estimation error points out a little different order of accurac
publishDate 2014
dc.date.none.fl_str_mv 2014-01-01T00:00:00Z
2018-07-17T12:01:51Z
2018-07-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/23314
http://hdl.handle.net/10174/23314
https://doi.org/10.1515/forj-2015-0007
url http://hdl.handle.net/10174/23314
https://doi.org/10.1515/forj-2015-0007
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv P Surový et al. / Lesn. Cas. For. J. 60 (2014) 244–249
psurovy@uevora.pt
cd@uevora.pt
nd
nmcar@uevora.pt
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Lesnick casopis - Forestry journal
publisher.none.fl_str_mv Lesnick casopis - Forestry journal
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136622939209728