Evaluating COVID-19 in Portugal: Bootstrap confidence interval

Detalhes bibliográficos
Autor(a) principal: Tedim, S.
Data de Publicação: 2024
Outros Autores: Afreixo, V., Felgueiras, M., Leitão, R. P., Pinheiro, S. J., Silva, C. J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/31289
Resumo: In this paper, we consider a compartmental model to fit the real data of confirmed active cases with COVID-19 in Portugal, from March 2, 2020 until September 10, 2021 in the Primary Care Cluster in Aveiro region, ACES BV, reported to the Public Health Unit. The model includes a deterministic component based on ordinary differential equations and a stochastic component based on bootstrap methods in regression. The main goal of this work is to take into account the variability underlying the data set and analyse the estimation accuracy of the model using a residual bootstrapped approach in order to compute confidence intervals for the prediction of COVID-19 confirmed active cases. All numerical simulations are performed in R environment ( version. 4.0.5). The proposed algorithm can be used, after a suitable adaptation, in other communicable diseases and outbreaks.
id RCAP_35dbfd5cc457fd868a0effb53f1e4cec
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/31289
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Evaluating COVID-19 in Portugal: Bootstrap confidence intervalCOVID-19Bootstrap confidence intervalSAIRP modelCentre of Portugal regionIn this paper, we consider a compartmental model to fit the real data of confirmed active cases with COVID-19 in Portugal, from March 2, 2020 until September 10, 2021 in the Primary Care Cluster in Aveiro region, ACES BV, reported to the Public Health Unit. The model includes a deterministic component based on ordinary differential equations and a stochastic component based on bootstrap methods in regression. The main goal of this work is to take into account the variability underlying the data set and analyse the estimation accuracy of the model using a residual bootstrapped approach in order to compute confidence intervals for the prediction of COVID-19 confirmed active cases. All numerical simulations are performed in R environment ( version. 4.0.5). The proposed algorithm can be used, after a suitable adaptation, in other communicable diseases and outbreaks.American Institute of Mathematical Sciences (AIMS)2024-03-11T11:24:36Z2024-01-01T00:00:00Z20242024-03-11T11:23:41Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/31289eng2473-698810.3934/math.2024136Tedim, S.Afreixo, V.Felgueiras, M.Leitão, R. P.Pinheiro, S. J.Silva, C. J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-17T01:17:29Zoai:repositorio.iscte-iul.pt:10071/31289Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T04:01:43.811805Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Evaluating COVID-19 in Portugal: Bootstrap confidence interval
title Evaluating COVID-19 in Portugal: Bootstrap confidence interval
spellingShingle Evaluating COVID-19 in Portugal: Bootstrap confidence interval
Tedim, S.
COVID-19
Bootstrap confidence interval
SAIRP model
Centre of Portugal region
title_short Evaluating COVID-19 in Portugal: Bootstrap confidence interval
title_full Evaluating COVID-19 in Portugal: Bootstrap confidence interval
title_fullStr Evaluating COVID-19 in Portugal: Bootstrap confidence interval
title_full_unstemmed Evaluating COVID-19 in Portugal: Bootstrap confidence interval
title_sort Evaluating COVID-19 in Portugal: Bootstrap confidence interval
author Tedim, S.
author_facet Tedim, S.
Afreixo, V.
Felgueiras, M.
Leitão, R. P.
Pinheiro, S. J.
Silva, C. J.
author_role author
author2 Afreixo, V.
Felgueiras, M.
Leitão, R. P.
Pinheiro, S. J.
Silva, C. J.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Tedim, S.
Afreixo, V.
Felgueiras, M.
Leitão, R. P.
Pinheiro, S. J.
Silva, C. J.
dc.subject.por.fl_str_mv COVID-19
Bootstrap confidence interval
SAIRP model
Centre of Portugal region
topic COVID-19
Bootstrap confidence interval
SAIRP model
Centre of Portugal region
description In this paper, we consider a compartmental model to fit the real data of confirmed active cases with COVID-19 in Portugal, from March 2, 2020 until September 10, 2021 in the Primary Care Cluster in Aveiro region, ACES BV, reported to the Public Health Unit. The model includes a deterministic component based on ordinary differential equations and a stochastic component based on bootstrap methods in regression. The main goal of this work is to take into account the variability underlying the data set and analyse the estimation accuracy of the model using a residual bootstrapped approach in order to compute confidence intervals for the prediction of COVID-19 confirmed active cases. All numerical simulations are performed in R environment ( version. 4.0.5). The proposed algorithm can be used, after a suitable adaptation, in other communicable diseases and outbreaks.
publishDate 2024
dc.date.none.fl_str_mv 2024-03-11T11:24:36Z
2024-01-01T00:00:00Z
2024
2024-03-11T11:23:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/31289
url http://hdl.handle.net/10071/31289
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2473-6988
10.3934/math.2024136
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Institute of Mathematical Sciences (AIMS)
publisher.none.fl_str_mv American Institute of Mathematical Sciences (AIMS)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138190178648064