Reliability Evaluation of Broadcast Protocols for FlexRay
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/9224 |
Resumo: | X-by-wire applications have extremely demanding reliability requirements that are increasingly being addressed through the adoption of distributed and fault-tolerant architectures. The development of these applications is facilitated by the availability of high-level services such as agreement or reliable broadcast (RB). Some dependable communication buses, e.g., TTP-C, already provide these services, whereas FlexRay does not. In this paper, we present an approach to evaluate the reliability of a family of RB protocols implemented both on top of FlexRay and on top of ordinary time-division multiple access (TDMA). In particular, we evaluate the impact of the acknowledgment policy on the reliability of these protocols. We express the reliability as the probability of violation of the agreement and validity properties of the protocol during a mission. For that, we develop an analytical model based on discrete-time Markov chains, which considers a comprehensive set of faults (permanent, transient, omissive, and asymmetric) affecting both nodes and channels, and their effects on the protocol execution. The structure of the model is quite flexible and easily adaptable to other TDMA-based protocols. To assess the sensitivity of the protocol to both internal and external factors, we carried out a large number of experiments considering several network configurations and fault rates. The results show that for FlexRay, the negative-acknowledgment policy provides the same reliability as the positive-acknowledgment policy. However, for TDMA-based protocols that lack FlexRay's ability to distinguish silence from the loss of a message, the negative-acknowledgment policy leads to lower reliability, and its fitness for safety-critical applications depends on the system configuration and environment conditions. |
id |
RCAP_368a0d9b082c99b8669975a6df20fd58 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/9224 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Reliability Evaluation of Broadcast Protocols for FlexRayProtocolsReliabilityReceiversComputational modelingTransient analysisVehicle dynamicsTime division multiple accessX-by-wire applications have extremely demanding reliability requirements that are increasingly being addressed through the adoption of distributed and fault-tolerant architectures. The development of these applications is facilitated by the availability of high-level services such as agreement or reliable broadcast (RB). Some dependable communication buses, e.g., TTP-C, already provide these services, whereas FlexRay does not. In this paper, we present an approach to evaluate the reliability of a family of RB protocols implemented both on top of FlexRay and on top of ordinary time-division multiple access (TDMA). In particular, we evaluate the impact of the acknowledgment policy on the reliability of these protocols. We express the reliability as the probability of violation of the agreement and validity properties of the protocol during a mission. For that, we develop an analytical model based on discrete-time Markov chains, which considers a comprehensive set of faults (permanent, transient, omissive, and asymmetric) affecting both nodes and channels, and their effects on the protocol execution. The structure of the model is quite flexible and easily adaptable to other TDMA-based protocols. To assess the sensitivity of the protocol to both internal and external factors, we carried out a large number of experiments considering several network configurations and fault rates. The results show that for FlexRay, the negative-acknowledgment policy provides the same reliability as the positive-acknowledgment policy. However, for TDMA-based protocols that lack FlexRay's ability to distinguish silence from the loss of a message, the negative-acknowledgment policy leads to lower reliability, and its fitness for safety-critical applications depends on the system configuration and environment conditions.Institute of Electrical and Electronics EngineersRepositório Científico do Instituto Politécnico do PortoSouto, PedroPortugal, PauloVasques, Francisco20162116-01-01T00:00:00Z2016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/9224eng0018-954510.1109/TVT.2015.2402216metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:50:22Zoai:recipp.ipp.pt:10400.22/9224Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:29:50.580183Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Reliability Evaluation of Broadcast Protocols for FlexRay |
title |
Reliability Evaluation of Broadcast Protocols for FlexRay |
spellingShingle |
Reliability Evaluation of Broadcast Protocols for FlexRay Souto, Pedro Protocols Reliability Receivers Computational modeling Transient analysis Vehicle dynamics Time division multiple access |
title_short |
Reliability Evaluation of Broadcast Protocols for FlexRay |
title_full |
Reliability Evaluation of Broadcast Protocols for FlexRay |
title_fullStr |
Reliability Evaluation of Broadcast Protocols for FlexRay |
title_full_unstemmed |
Reliability Evaluation of Broadcast Protocols for FlexRay |
title_sort |
Reliability Evaluation of Broadcast Protocols for FlexRay |
author |
Souto, Pedro |
author_facet |
Souto, Pedro Portugal, Paulo Vasques, Francisco |
author_role |
author |
author2 |
Portugal, Paulo Vasques, Francisco |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Souto, Pedro Portugal, Paulo Vasques, Francisco |
dc.subject.por.fl_str_mv |
Protocols Reliability Receivers Computational modeling Transient analysis Vehicle dynamics Time division multiple access |
topic |
Protocols Reliability Receivers Computational modeling Transient analysis Vehicle dynamics Time division multiple access |
description |
X-by-wire applications have extremely demanding reliability requirements that are increasingly being addressed through the adoption of distributed and fault-tolerant architectures. The development of these applications is facilitated by the availability of high-level services such as agreement or reliable broadcast (RB). Some dependable communication buses, e.g., TTP-C, already provide these services, whereas FlexRay does not. In this paper, we present an approach to evaluate the reliability of a family of RB protocols implemented both on top of FlexRay and on top of ordinary time-division multiple access (TDMA). In particular, we evaluate the impact of the acknowledgment policy on the reliability of these protocols. We express the reliability as the probability of violation of the agreement and validity properties of the protocol during a mission. For that, we develop an analytical model based on discrete-time Markov chains, which considers a comprehensive set of faults (permanent, transient, omissive, and asymmetric) affecting both nodes and channels, and their effects on the protocol execution. The structure of the model is quite flexible and easily adaptable to other TDMA-based protocols. To assess the sensitivity of the protocol to both internal and external factors, we carried out a large number of experiments considering several network configurations and fault rates. The results show that for FlexRay, the negative-acknowledgment policy provides the same reliability as the positive-acknowledgment policy. However, for TDMA-based protocols that lack FlexRay's ability to distinguish silence from the loss of a message, the negative-acknowledgment policy leads to lower reliability, and its fitness for safety-critical applications depends on the system configuration and environment conditions. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2016-01-01T00:00:00Z 2116-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/9224 |
url |
http://hdl.handle.net/10400.22/9224 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0018-9545 10.1109/TVT.2015.2402216 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131394701524992 |