New convolutions and their applicability to integral equations of Wiener-Hopf plus Hankel type
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/28231 |
Resumo: | We propose four new convolutions exhibiting convenient factorization properties associated with two finite interval integral transformations of Fourier-type together with their norm inequalities. Moreover, we study the solvability of a class of integral equations of Wiener-Hopf plus Hankel type (on finite intervals) with the help of the factorization identities of such convolutions. Fourier-type series are used to produce the solution formula of such equations and a Shannon-type sampling formula is also obtained. |
id |
RCAP_36c228f4254695289c785a8e9ac16dda |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/28231 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
New convolutions and their applicability to integral equations of Wiener-Hopf plus Hankel typeConvolutionIntegral equationFactorizationFourier integral operatorWiener-Hopf operatorHankel operatorWe propose four new convolutions exhibiting convenient factorization properties associated with two finite interval integral transformations of Fourier-type together with their norm inequalities. Moreover, we study the solvability of a class of integral equations of Wiener-Hopf plus Hankel type (on finite intervals) with the help of the factorization identities of such convolutions. Fourier-type series are used to produce the solution formula of such equations and a Shannon-type sampling formula is also obtained.Wiley2021-05-15T00:00:00Z2020-05-15T00:00:00Z2020-05-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/28231eng0170-421410.1002/mma.6236Castro, Luis P.Guerra, Rita C.Tuan, Nguyen Minhinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:54:37Zoai:ria.ua.pt:10773/28231Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:00:49.379894Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
New convolutions and their applicability to integral equations of Wiener-Hopf plus Hankel type |
title |
New convolutions and their applicability to integral equations of Wiener-Hopf plus Hankel type |
spellingShingle |
New convolutions and their applicability to integral equations of Wiener-Hopf plus Hankel type Castro, Luis P. Convolution Integral equation Factorization Fourier integral operator Wiener-Hopf operator Hankel operator |
title_short |
New convolutions and their applicability to integral equations of Wiener-Hopf plus Hankel type |
title_full |
New convolutions and their applicability to integral equations of Wiener-Hopf plus Hankel type |
title_fullStr |
New convolutions and their applicability to integral equations of Wiener-Hopf plus Hankel type |
title_full_unstemmed |
New convolutions and their applicability to integral equations of Wiener-Hopf plus Hankel type |
title_sort |
New convolutions and their applicability to integral equations of Wiener-Hopf plus Hankel type |
author |
Castro, Luis P. |
author_facet |
Castro, Luis P. Guerra, Rita C. Tuan, Nguyen Minh |
author_role |
author |
author2 |
Guerra, Rita C. Tuan, Nguyen Minh |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Castro, Luis P. Guerra, Rita C. Tuan, Nguyen Minh |
dc.subject.por.fl_str_mv |
Convolution Integral equation Factorization Fourier integral operator Wiener-Hopf operator Hankel operator |
topic |
Convolution Integral equation Factorization Fourier integral operator Wiener-Hopf operator Hankel operator |
description |
We propose four new convolutions exhibiting convenient factorization properties associated with two finite interval integral transformations of Fourier-type together with their norm inequalities. Moreover, we study the solvability of a class of integral equations of Wiener-Hopf plus Hankel type (on finite intervals) with the help of the factorization identities of such convolutions. Fourier-type series are used to produce the solution formula of such equations and a Shannon-type sampling formula is also obtained. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05-15T00:00:00Z 2020-05-15 2021-05-15T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/28231 |
url |
http://hdl.handle.net/10773/28231 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0170-4214 10.1002/mma.6236 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137663853264896 |