Impact of variable transformations on multiple regression models for enhancing gait normalization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/88021 |
Resumo: | Gait analysis has become an important tool in clinical practice for monitoring disease progression and evaluating therapeutic interventions. However, a subject's gait characteristics can be affected by physical characteristics such as age and height, which can interfere with accurate comparisons between subjects. MLR normalization has been shown to be effective in reducing interference from subject-specific physical properties, but non-linear effects can still impact the results. In this study, the independent variables were transformed to improve normalization performance, and the results indicate that using MR normalization with data transformation can effectively de-correlate physical characteristics from gait variables, improving the model fit and augment the capability to compare subjects with varying physical characteristics. This study provides valuable insights into the use of MLR models for gait normalization, with potential applications in clinical practice and research. |
id |
RCAP_37d2177a582ac7cbb74e05058f77a2a9 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/88021 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Impact of variable transformations on multiple regression models for enhancing gait normalizationMultiple regression analysisHealth care applicationGait analysisGait normalizationData transformationMultiple linear regression modelsCiências Naturais::MatemáticasSaúde de qualidadeGait analysis has become an important tool in clinical practice for monitoring disease progression and evaluating therapeutic interventions. However, a subject's gait characteristics can be affected by physical characteristics such as age and height, which can interfere with accurate comparisons between subjects. MLR normalization has been shown to be effective in reducing interference from subject-specific physical properties, but non-linear effects can still impact the results. In this study, the independent variables were transformed to improve normalization performance, and the results indicate that using MR normalization with data transformation can effectively de-correlate physical characteristics from gait variables, improving the model fit and augment the capability to compare subjects with varying physical characteristics. This study provides valuable insights into the use of MLR models for gait normalization, with potential applications in clinical practice and research.Supported by Portuguese funds through the Centre of Mathematics and the Portuguese Foundation for Science and Technology (FCT),within the projects UIDB/00013/2020 and UIDP/00013/2020.ACM PressUniversidade do MinhoFerreira, FloraBarrios, JhonathanBarbosa, PauloGago, Miguel F.Bicho, EstelaErlhagen, Wolfram2023-122023-12-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://hdl.handle.net/1822/88021engFerreira, F., Barrios, J., Barbosa, P., Gago, M. F., Bicho, E., & Erlhagen, W. (2023, July). Impact of Variable Transformations on Multiple Regression Models for Enhancing Gait Normalization. In Proceedings of the 2023 6th International Conference on Mathematics and Statistics (pp. 103-107).979-8-4007-0018-710.1145/3613347.3613363https://dl.acm.org/doi/abs/10.1145/3613347.3613363info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T06:34:56Zoai:repositorium.sdum.uminho.pt:1822/88021Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T06:34:56Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Impact of variable transformations on multiple regression models for enhancing gait normalization |
title |
Impact of variable transformations on multiple regression models for enhancing gait normalization |
spellingShingle |
Impact of variable transformations on multiple regression models for enhancing gait normalization Ferreira, Flora Multiple regression analysis Health care application Gait analysis Gait normalization Data transformation Multiple linear regression models Ciências Naturais::Matemáticas Saúde de qualidade |
title_short |
Impact of variable transformations on multiple regression models for enhancing gait normalization |
title_full |
Impact of variable transformations on multiple regression models for enhancing gait normalization |
title_fullStr |
Impact of variable transformations on multiple regression models for enhancing gait normalization |
title_full_unstemmed |
Impact of variable transformations on multiple regression models for enhancing gait normalization |
title_sort |
Impact of variable transformations on multiple regression models for enhancing gait normalization |
author |
Ferreira, Flora |
author_facet |
Ferreira, Flora Barrios, Jhonathan Barbosa, Paulo Gago, Miguel F. Bicho, Estela Erlhagen, Wolfram |
author_role |
author |
author2 |
Barrios, Jhonathan Barbosa, Paulo Gago, Miguel F. Bicho, Estela Erlhagen, Wolfram |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Ferreira, Flora Barrios, Jhonathan Barbosa, Paulo Gago, Miguel F. Bicho, Estela Erlhagen, Wolfram |
dc.subject.por.fl_str_mv |
Multiple regression analysis Health care application Gait analysis Gait normalization Data transformation Multiple linear regression models Ciências Naturais::Matemáticas Saúde de qualidade |
topic |
Multiple regression analysis Health care application Gait analysis Gait normalization Data transformation Multiple linear regression models Ciências Naturais::Matemáticas Saúde de qualidade |
description |
Gait analysis has become an important tool in clinical practice for monitoring disease progression and evaluating therapeutic interventions. However, a subject's gait characteristics can be affected by physical characteristics such as age and height, which can interfere with accurate comparisons between subjects. MLR normalization has been shown to be effective in reducing interference from subject-specific physical properties, but non-linear effects can still impact the results. In this study, the independent variables were transformed to improve normalization performance, and the results indicate that using MR normalization with data transformation can effectively de-correlate physical characteristics from gait variables, improving the model fit and augment the capability to compare subjects with varying physical characteristics. This study provides valuable insights into the use of MLR models for gait normalization, with potential applications in clinical practice and research. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12 2023-12-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/88021 |
url |
https://hdl.handle.net/1822/88021 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ferreira, F., Barrios, J., Barbosa, P., Gago, M. F., Bicho, E., & Erlhagen, W. (2023, July). Impact of Variable Transformations on Multiple Regression Models for Enhancing Gait Normalization. In Proceedings of the 2023 6th International Conference on Mathematics and Statistics (pp. 103-107). 979-8-4007-0018-7 10.1145/3613347.3613363 https://dl.acm.org/doi/abs/10.1145/3613347.3613363 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
ACM Press |
publisher.none.fl_str_mv |
ACM Press |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545022036246528 |