Uncertainty-Based Rejection in Machine Learning: Implications for Model Development and Interpretability
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/134349 |
Resumo: | POCI-01-0247-FEDER-033479 |
id |
RCAP_37f4e911908551482fddef1560c07acd |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/134349 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Uncertainty-Based Rejection in Machine Learning: Implications for Model Development and InterpretabilityArtificial intelligenceHuman activity recognitionInterpretabilityMachine learningRejection optionUncertainty quantificationControl and Systems EngineeringSignal ProcessingHardware and ArchitectureComputer Networks and CommunicationsElectrical and Electronic EngineeringPOCI-01-0247-FEDER-033479Uncertainty is present in every single prediction of Machine Learning (ML) models. Uncertainty Quantification (UQ) is arguably relevant, in particular for safety-critical applications. Prior research focused on the development of methods to quantify uncertainty; however, less attention has been given to how to leverage the knowledge of uncertainty in the process of model development. This work focused on applying UQ into practice, closing the gap of its utility in the ML pipeline and giving insights into how UQ is used to improve model development and its interpretability. We identified three main research questions: (1) How can UQ contribute to choosing the most suitable model for a given classification task? (2) Can UQ be used to combine different models in a principled manner? (3) Can visualization techniques improve UQ’s interpretability? These questions are answered by applying several methods to quantify uncertainty in both a simulated dataset and a real-world dataset of Human Activity Recognition (HAR). Our results showed that uncertainty quantification can increase model robustness and interpretability.DF – Departamento de FísicaLIBPhys-UNLRUNBarandas, MaríliaFolgado, DuarteSantos, RicardoSimão, RaquelGamboa, Hugo2022-03-11T23:22:45Z2022-02-012022-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/134349eng2079-9292PURE: 36763081https://doi.org/10.3390/electronics11030396info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:12:49Zoai:run.unl.pt:10362/134349Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:48:04.502058Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Uncertainty-Based Rejection in Machine Learning: Implications for Model Development and Interpretability |
title |
Uncertainty-Based Rejection in Machine Learning: Implications for Model Development and Interpretability |
spellingShingle |
Uncertainty-Based Rejection in Machine Learning: Implications for Model Development and Interpretability Barandas, Marília Artificial intelligence Human activity recognition Interpretability Machine learning Rejection option Uncertainty quantification Control and Systems Engineering Signal Processing Hardware and Architecture Computer Networks and Communications Electrical and Electronic Engineering |
title_short |
Uncertainty-Based Rejection in Machine Learning: Implications for Model Development and Interpretability |
title_full |
Uncertainty-Based Rejection in Machine Learning: Implications for Model Development and Interpretability |
title_fullStr |
Uncertainty-Based Rejection in Machine Learning: Implications for Model Development and Interpretability |
title_full_unstemmed |
Uncertainty-Based Rejection in Machine Learning: Implications for Model Development and Interpretability |
title_sort |
Uncertainty-Based Rejection in Machine Learning: Implications for Model Development and Interpretability |
author |
Barandas, Marília |
author_facet |
Barandas, Marília Folgado, Duarte Santos, Ricardo Simão, Raquel Gamboa, Hugo |
author_role |
author |
author2 |
Folgado, Duarte Santos, Ricardo Simão, Raquel Gamboa, Hugo |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
DF – Departamento de Física LIBPhys-UNL RUN |
dc.contributor.author.fl_str_mv |
Barandas, Marília Folgado, Duarte Santos, Ricardo Simão, Raquel Gamboa, Hugo |
dc.subject.por.fl_str_mv |
Artificial intelligence Human activity recognition Interpretability Machine learning Rejection option Uncertainty quantification Control and Systems Engineering Signal Processing Hardware and Architecture Computer Networks and Communications Electrical and Electronic Engineering |
topic |
Artificial intelligence Human activity recognition Interpretability Machine learning Rejection option Uncertainty quantification Control and Systems Engineering Signal Processing Hardware and Architecture Computer Networks and Communications Electrical and Electronic Engineering |
description |
POCI-01-0247-FEDER-033479 |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-11T23:22:45Z 2022-02-01 2022-02-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/134349 |
url |
http://hdl.handle.net/10362/134349 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2079-9292 PURE: 36763081 https://doi.org/10.3390/electronics11030396 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138082394472448 |