Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/20056 |
Resumo: | This paper develops a novel analytically tractable Neumann series of Bessel functions representation for pricing (and hedging) European-style double barrier knock-out options, which can be applied to the whole class of one-dimensional time-homogeneous diffusions, even for the cases where the corresponding transition density is not known. The proposed numerical method is shown to be efficient and simple to implement. To illustrate the flexibility and computational power of the algorithm, we develop an extended jump to default model that is able to capture several empirical regularities commonly observed in the literature. |
id |
RCAP_3825aacdc279c82c5da1066931fb68ff |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/20056 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representationDouble barrier optionsDefaultNeumann series of Bessel functionsSturm-Liouville equationsSpectral decompositionTransmutation operatorsThis paper develops a novel analytically tractable Neumann series of Bessel functions representation for pricing (and hedging) European-style double barrier knock-out options, which can be applied to the whole class of one-dimensional time-homogeneous diffusions, even for the cases where the corresponding transition density is not known. The proposed numerical method is shown to be efficient and simple to implement. To illustrate the flexibility and computational power of the algorithm, we develop an extended jump to default model that is able to capture several empirical regularities commonly observed in the literature.World Scientific Publishing2020-03-09T10:35:13Z2019-01-01T00:00:00Z20192020-03-09T10:34:17Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/20056eng0219-024910.1142/S0219024919500304Kravchenko, I.Kravchenko, V. V.Torba, S. M.Dias, J. C.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T03:15:22Zoai:repositorio.iscte-iul.pt:10071/20056Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T03:15:22Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation |
title |
Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation |
spellingShingle |
Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation Kravchenko, I. Double barrier options Default Neumann series of Bessel functions Sturm-Liouville equations Spectral decomposition Transmutation operators |
title_short |
Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation |
title_full |
Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation |
title_fullStr |
Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation |
title_full_unstemmed |
Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation |
title_sort |
Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation |
author |
Kravchenko, I. |
author_facet |
Kravchenko, I. Kravchenko, V. V. Torba, S. M. Dias, J. C. |
author_role |
author |
author2 |
Kravchenko, V. V. Torba, S. M. Dias, J. C. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Kravchenko, I. Kravchenko, V. V. Torba, S. M. Dias, J. C. |
dc.subject.por.fl_str_mv |
Double barrier options Default Neumann series of Bessel functions Sturm-Liouville equations Spectral decomposition Transmutation operators |
topic |
Double barrier options Default Neumann series of Bessel functions Sturm-Liouville equations Spectral decomposition Transmutation operators |
description |
This paper develops a novel analytically tractable Neumann series of Bessel functions representation for pricing (and hedging) European-style double barrier knock-out options, which can be applied to the whole class of one-dimensional time-homogeneous diffusions, even for the cases where the corresponding transition density is not known. The proposed numerical method is shown to be efficient and simple to implement. To illustrate the flexibility and computational power of the algorithm, we develop an extended jump to default model that is able to capture several empirical regularities commonly observed in the literature. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01T00:00:00Z 2019 2020-03-09T10:35:13Z 2020-03-09T10:34:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/20056 |
url |
http://hdl.handle.net/10071/20056 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0219-0249 10.1142/S0219024919500304 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific Publishing |
publisher.none.fl_str_mv |
World Scientific Publishing |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817546426936197120 |