Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation

Detalhes bibliográficos
Autor(a) principal: Kravchenko, I.
Data de Publicação: 2019
Outros Autores: Kravchenko, V. V., Torba, S. M., Dias, J. C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/20056
Resumo: This paper develops a novel analytically tractable Neumann series of Bessel functions representation for pricing (and hedging) European-style double barrier knock-out options, which can be applied to the whole class of one-dimensional time-homogeneous diffusions, even for the cases where the corresponding transition density is not known. The proposed numerical method is shown to be efficient and simple to implement. To illustrate the flexibility and computational power of the algorithm, we develop an extended jump to default model that is able to capture several empirical regularities commonly observed in the literature.
id RCAP_3825aacdc279c82c5da1066931fb68ff
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/20056
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representationDouble barrier optionsDefaultNeumann series of Bessel functionsSturm-Liouville equationsSpectral decompositionTransmutation operatorsThis paper develops a novel analytically tractable Neumann series of Bessel functions representation for pricing (and hedging) European-style double barrier knock-out options, which can be applied to the whole class of one-dimensional time-homogeneous diffusions, even for the cases where the corresponding transition density is not known. The proposed numerical method is shown to be efficient and simple to implement. To illustrate the flexibility and computational power of the algorithm, we develop an extended jump to default model that is able to capture several empirical regularities commonly observed in the literature.World Scientific Publishing2020-03-09T10:35:13Z2019-01-01T00:00:00Z20192020-03-09T10:34:17Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/20056eng0219-024910.1142/S0219024919500304Kravchenko, I.Kravchenko, V. V.Torba, S. M.Dias, J. C.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T03:15:22Zoai:repositorio.iscte-iul.pt:10071/20056Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T03:15:22Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation
title Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation
spellingShingle Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation
Kravchenko, I.
Double barrier options
Default
Neumann series of Bessel functions
Sturm-Liouville equations
Spectral decomposition
Transmutation operators
title_short Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation
title_full Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation
title_fullStr Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation
title_full_unstemmed Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation
title_sort Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation
author Kravchenko, I.
author_facet Kravchenko, I.
Kravchenko, V. V.
Torba, S. M.
Dias, J. C.
author_role author
author2 Kravchenko, V. V.
Torba, S. M.
Dias, J. C.
author2_role author
author
author
dc.contributor.author.fl_str_mv Kravchenko, I.
Kravchenko, V. V.
Torba, S. M.
Dias, J. C.
dc.subject.por.fl_str_mv Double barrier options
Default
Neumann series of Bessel functions
Sturm-Liouville equations
Spectral decomposition
Transmutation operators
topic Double barrier options
Default
Neumann series of Bessel functions
Sturm-Liouville equations
Spectral decomposition
Transmutation operators
description This paper develops a novel analytically tractable Neumann series of Bessel functions representation for pricing (and hedging) European-style double barrier knock-out options, which can be applied to the whole class of one-dimensional time-homogeneous diffusions, even for the cases where the corresponding transition density is not known. The proposed numerical method is shown to be efficient and simple to implement. To illustrate the flexibility and computational power of the algorithm, we develop an extended jump to default model that is able to capture several empirical regularities commonly observed in the literature.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-01T00:00:00Z
2019
2020-03-09T10:35:13Z
2020-03-09T10:34:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/20056
url http://hdl.handle.net/10071/20056
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0219-0249
10.1142/S0219024919500304
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv World Scientific Publishing
publisher.none.fl_str_mv World Scientific Publishing
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817546426936197120