C-RAN CoMP Methods for MPR Receivers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/61580 |
Resumo: | The growth in mobile network traffic due to the increase in MTC (Machine Type Communication) applications, brings along a series of new challenges in traffic routing and management. The goals are to have effective resolution times (less delay), low energy consuption (given that wide sensor networks which are included in the MTC category, are built to last years with respect to their battery consuption) and extremely reliable communication (low Packet Error Rates), following the fifth generation (5G) mobile network demands. In order to deal with this type of dense traffic, several uplink strategies can be devised, where diversity variables like space (several Base Stations deployed), time (number of retransmissions of a given packet per user) and power spreading (power value diversity at the receiver, introducing the concept of SIC and Power-NOMA) have to be handled carefully to fulfill the requirements demanded in Ultra-Reliable Low-Latency Communication (URLLC). This thesis, besides being restricted in terms of transmission power and processing of a User Equipment (UE), works on top of an Iterative Block Decision Feedback Equalization Reciever that allows Multi Packet Reception to deal with the diversity types mentioned earlier. The results of this thesis explore the possibility of fragmenting the processing capabilities in an integrated cloud network (C-RAN) environment through an SINR estimation at the receiver to better understand how and where we can break and distribute our processing needs in order to handle near Base Station users and cell-edge users, the latters being the hardest to deal with in dense networks like the ones deployed in a MTC environment. |
id |
RCAP_38d15d59fdea65eec5efcdff7f47e423 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/61580 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
C-RAN CoMP Methods for MPR Receivers5GC-RANMulti-Packet DetectionIterative Block Decision Feedback EqualizationCoordinated MultipointPower-NOMADomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaThe growth in mobile network traffic due to the increase in MTC (Machine Type Communication) applications, brings along a series of new challenges in traffic routing and management. The goals are to have effective resolution times (less delay), low energy consuption (given that wide sensor networks which are included in the MTC category, are built to last years with respect to their battery consuption) and extremely reliable communication (low Packet Error Rates), following the fifth generation (5G) mobile network demands. In order to deal with this type of dense traffic, several uplink strategies can be devised, where diversity variables like space (several Base Stations deployed), time (number of retransmissions of a given packet per user) and power spreading (power value diversity at the receiver, introducing the concept of SIC and Power-NOMA) have to be handled carefully to fulfill the requirements demanded in Ultra-Reliable Low-Latency Communication (URLLC). This thesis, besides being restricted in terms of transmission power and processing of a User Equipment (UE), works on top of an Iterative Block Decision Feedback Equalization Reciever that allows Multi Packet Reception to deal with the diversity types mentioned earlier. The results of this thesis explore the possibility of fragmenting the processing capabilities in an integrated cloud network (C-RAN) environment through an SINR estimation at the receiver to better understand how and where we can break and distribute our processing needs in order to handle near Base Station users and cell-edge users, the latters being the hardest to deal with in dense networks like the ones deployed in a MTC environment.Bernardo, LuisDinis, RuiRUNRaposo, Tiago Miguel de Góis2019-02-25T15:55:55Z2018-1220182018-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/61580enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:29:15Zoai:run.unl.pt:10362/61580Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:33:38.786814Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
C-RAN CoMP Methods for MPR Receivers |
title |
C-RAN CoMP Methods for MPR Receivers |
spellingShingle |
C-RAN CoMP Methods for MPR Receivers Raposo, Tiago Miguel de Góis 5G C-RAN Multi-Packet Detection Iterative Block Decision Feedback Equalization Coordinated Multipoint Power-NOMA Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
C-RAN CoMP Methods for MPR Receivers |
title_full |
C-RAN CoMP Methods for MPR Receivers |
title_fullStr |
C-RAN CoMP Methods for MPR Receivers |
title_full_unstemmed |
C-RAN CoMP Methods for MPR Receivers |
title_sort |
C-RAN CoMP Methods for MPR Receivers |
author |
Raposo, Tiago Miguel de Góis |
author_facet |
Raposo, Tiago Miguel de Góis |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bernardo, Luis Dinis, Rui RUN |
dc.contributor.author.fl_str_mv |
Raposo, Tiago Miguel de Góis |
dc.subject.por.fl_str_mv |
5G C-RAN Multi-Packet Detection Iterative Block Decision Feedback Equalization Coordinated Multipoint Power-NOMA Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
5G C-RAN Multi-Packet Detection Iterative Block Decision Feedback Equalization Coordinated Multipoint Power-NOMA Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
The growth in mobile network traffic due to the increase in MTC (Machine Type Communication) applications, brings along a series of new challenges in traffic routing and management. The goals are to have effective resolution times (less delay), low energy consuption (given that wide sensor networks which are included in the MTC category, are built to last years with respect to their battery consuption) and extremely reliable communication (low Packet Error Rates), following the fifth generation (5G) mobile network demands. In order to deal with this type of dense traffic, several uplink strategies can be devised, where diversity variables like space (several Base Stations deployed), time (number of retransmissions of a given packet per user) and power spreading (power value diversity at the receiver, introducing the concept of SIC and Power-NOMA) have to be handled carefully to fulfill the requirements demanded in Ultra-Reliable Low-Latency Communication (URLLC). This thesis, besides being restricted in terms of transmission power and processing of a User Equipment (UE), works on top of an Iterative Block Decision Feedback Equalization Reciever that allows Multi Packet Reception to deal with the diversity types mentioned earlier. The results of this thesis explore the possibility of fragmenting the processing capabilities in an integrated cloud network (C-RAN) environment through an SINR estimation at the receiver to better understand how and where we can break and distribute our processing needs in order to handle near Base Station users and cell-edge users, the latters being the hardest to deal with in dense networks like the ones deployed in a MTC environment. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12 2018 2018-12-01T00:00:00Z 2019-02-25T15:55:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/61580 |
url |
http://hdl.handle.net/10362/61580 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137958271385600 |