A coalgebraic perspective on linear weighted automata

Detalhes bibliográficos
Autor(a) principal: Filippo Bonchi
Data de Publicação: 2012
Outros Autores: Alexandra Silva, Jan Rutten, Michele Boreale, Marcello Bonsangue
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/2813
http://dx.doi.org/10.1016/j.ic.2011.12.002
Resumo: Weighted automata are a generalisation of non-deterministic automata where each transition, in addition to an input letter, has also a quantity expressing the weight (e.g. cost or probability) of its execution. As for non-deterministic automata, their behaviours can be expressed in terms of either (weighted) bisimilarity or (weighted) language equivalence. Coalgebras provide a categorical framework for the uniform study of state-based systems and their behaviours. In this work, we show that coalgebras can suitably model weighted automata in two different ways: coalgebras on SetSet (the category of sets and functions) characterise weighted bisimilarity, while coalgebras on VectVect (the category of vector spaces and linear maps) characterise weighted language equivalence. Relying on the second characterisation, we show three different procedures for computing weighted language equivalence. The first one consists in a generalisation of the usual partition refinement algorithm for ordi
id RCAP_38e26f9e037221228b762d5a00cace8f
oai_identifier_str oai:repositorio.inesctec.pt:123456789/2813
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A coalgebraic perspective on linear weighted automataWeighted automata are a generalisation of non-deterministic automata where each transition, in addition to an input letter, has also a quantity expressing the weight (e.g. cost or probability) of its execution. As for non-deterministic automata, their behaviours can be expressed in terms of either (weighted) bisimilarity or (weighted) language equivalence. Coalgebras provide a categorical framework for the uniform study of state-based systems and their behaviours. In this work, we show that coalgebras can suitably model weighted automata in two different ways: coalgebras on SetSet (the category of sets and functions) characterise weighted bisimilarity, while coalgebras on VectVect (the category of vector spaces and linear maps) characterise weighted language equivalence. Relying on the second characterisation, we show three different procedures for computing weighted language equivalence. The first one consists in a generalisation of the usual partition refinement algorithm for ordi2017-11-16T14:09:38Z2012-01-01T00:00:00Z2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/2813http://dx.doi.org/10.1016/j.ic.2011.12.002engFilippo BonchiAlexandra SilvaJan RuttenMichele BorealeMarcello Bonsangueinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:19:40Zoai:repositorio.inesctec.pt:123456789/2813Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:52:04.964936Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A coalgebraic perspective on linear weighted automata
title A coalgebraic perspective on linear weighted automata
spellingShingle A coalgebraic perspective on linear weighted automata
Filippo Bonchi
title_short A coalgebraic perspective on linear weighted automata
title_full A coalgebraic perspective on linear weighted automata
title_fullStr A coalgebraic perspective on linear weighted automata
title_full_unstemmed A coalgebraic perspective on linear weighted automata
title_sort A coalgebraic perspective on linear weighted automata
author Filippo Bonchi
author_facet Filippo Bonchi
Alexandra Silva
Jan Rutten
Michele Boreale
Marcello Bonsangue
author_role author
author2 Alexandra Silva
Jan Rutten
Michele Boreale
Marcello Bonsangue
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Filippo Bonchi
Alexandra Silva
Jan Rutten
Michele Boreale
Marcello Bonsangue
description Weighted automata are a generalisation of non-deterministic automata where each transition, in addition to an input letter, has also a quantity expressing the weight (e.g. cost or probability) of its execution. As for non-deterministic automata, their behaviours can be expressed in terms of either (weighted) bisimilarity or (weighted) language equivalence. Coalgebras provide a categorical framework for the uniform study of state-based systems and their behaviours. In this work, we show that coalgebras can suitably model weighted automata in two different ways: coalgebras on SetSet (the category of sets and functions) characterise weighted bisimilarity, while coalgebras on VectVect (the category of vector spaces and linear maps) characterise weighted language equivalence. Relying on the second characterisation, we show three different procedures for computing weighted language equivalence. The first one consists in a generalisation of the usual partition refinement algorithm for ordi
publishDate 2012
dc.date.none.fl_str_mv 2012-01-01T00:00:00Z
2012
2017-11-16T14:09:38Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/2813
http://dx.doi.org/10.1016/j.ic.2011.12.002
url http://repositorio.inesctec.pt/handle/123456789/2813
http://dx.doi.org/10.1016/j.ic.2011.12.002
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131597848444928