A coalgebraic perspective on linear weighted automata
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://repositorio.inesctec.pt/handle/123456789/2813 http://dx.doi.org/10.1016/j.ic.2011.12.002 |
Resumo: | Weighted automata are a generalisation of non-deterministic automata where each transition, in addition to an input letter, has also a quantity expressing the weight (e.g. cost or probability) of its execution. As for non-deterministic automata, their behaviours can be expressed in terms of either (weighted) bisimilarity or (weighted) language equivalence. Coalgebras provide a categorical framework for the uniform study of state-based systems and their behaviours. In this work, we show that coalgebras can suitably model weighted automata in two different ways: coalgebras on SetSet (the category of sets and functions) characterise weighted bisimilarity, while coalgebras on VectVect (the category of vector spaces and linear maps) characterise weighted language equivalence. Relying on the second characterisation, we show three different procedures for computing weighted language equivalence. The first one consists in a generalisation of the usual partition refinement algorithm for ordi |
id |
RCAP_38e26f9e037221228b762d5a00cace8f |
---|---|
oai_identifier_str |
oai:repositorio.inesctec.pt:123456789/2813 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A coalgebraic perspective on linear weighted automataWeighted automata are a generalisation of non-deterministic automata where each transition, in addition to an input letter, has also a quantity expressing the weight (e.g. cost or probability) of its execution. As for non-deterministic automata, their behaviours can be expressed in terms of either (weighted) bisimilarity or (weighted) language equivalence. Coalgebras provide a categorical framework for the uniform study of state-based systems and their behaviours. In this work, we show that coalgebras can suitably model weighted automata in two different ways: coalgebras on SetSet (the category of sets and functions) characterise weighted bisimilarity, while coalgebras on VectVect (the category of vector spaces and linear maps) characterise weighted language equivalence. Relying on the second characterisation, we show three different procedures for computing weighted language equivalence. The first one consists in a generalisation of the usual partition refinement algorithm for ordi2017-11-16T14:09:38Z2012-01-01T00:00:00Z2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/2813http://dx.doi.org/10.1016/j.ic.2011.12.002engFilippo BonchiAlexandra SilvaJan RuttenMichele BorealeMarcello Bonsangueinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:19:40Zoai:repositorio.inesctec.pt:123456789/2813Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:52:04.964936Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A coalgebraic perspective on linear weighted automata |
title |
A coalgebraic perspective on linear weighted automata |
spellingShingle |
A coalgebraic perspective on linear weighted automata Filippo Bonchi |
title_short |
A coalgebraic perspective on linear weighted automata |
title_full |
A coalgebraic perspective on linear weighted automata |
title_fullStr |
A coalgebraic perspective on linear weighted automata |
title_full_unstemmed |
A coalgebraic perspective on linear weighted automata |
title_sort |
A coalgebraic perspective on linear weighted automata |
author |
Filippo Bonchi |
author_facet |
Filippo Bonchi Alexandra Silva Jan Rutten Michele Boreale Marcello Bonsangue |
author_role |
author |
author2 |
Alexandra Silva Jan Rutten Michele Boreale Marcello Bonsangue |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Filippo Bonchi Alexandra Silva Jan Rutten Michele Boreale Marcello Bonsangue |
description |
Weighted automata are a generalisation of non-deterministic automata where each transition, in addition to an input letter, has also a quantity expressing the weight (e.g. cost or probability) of its execution. As for non-deterministic automata, their behaviours can be expressed in terms of either (weighted) bisimilarity or (weighted) language equivalence. Coalgebras provide a categorical framework for the uniform study of state-based systems and their behaviours. In this work, we show that coalgebras can suitably model weighted automata in two different ways: coalgebras on SetSet (the category of sets and functions) characterise weighted bisimilarity, while coalgebras on VectVect (the category of vector spaces and linear maps) characterise weighted language equivalence. Relying on the second characterisation, we show three different procedures for computing weighted language equivalence. The first one consists in a generalisation of the usual partition refinement algorithm for ordi |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-01-01T00:00:00Z 2012 2017-11-16T14:09:38Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.inesctec.pt/handle/123456789/2813 http://dx.doi.org/10.1016/j.ic.2011.12.002 |
url |
http://repositorio.inesctec.pt/handle/123456789/2813 http://dx.doi.org/10.1016/j.ic.2011.12.002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131597848444928 |