Implementation of DAQ/FPGA electronics and control software for Optically Detected Magnetic Resonance (ODMR) experiments on a widefield microscope
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10348/11951 |
Resumo: | The main objective of this thesis is to develop and test the experimental upgrade of a wide-field fluorescence microscope that will allow optically-detected magnetic resonance (ODMR) experiments to be performed at optical centers in diamonds, known as NitrogenVacancies (NVs). The optically detected magnetic resonance technique may be used as a non-invasive magnetometry technique. Magnetic field detection applications may involve NVs implanted in diamond or fluorescent nanodiamonds. Both of these samples are compatible with the upgraded ODMR setup developed in this thesis. In the future, the ODMR wide-field microscope could be used to investigate magnetic nanostructures with applications in cancer treatment such as magnetic nanoparticles, and in medical research, especially in neurosciences. The NVs in diamond create highly fluorescent color centers, which are the basis of the ODMR technique. By using fluorescent nanodiamonds, the NVs can be localized in close proximity to specific organelles or axons, where temperature or magnetic field measurements are relevant. This thesis describes the implementation of the necessary hardware, such as the microwave generator, the field programmable gate array, and its synchronization with an EMCCD detector implemented in a device control software developed in Python 3.10. Testing of the developed setup included running OMDR experiments on two types of diamond samples. First, a nanodiamond sample was visualized and the ODMR signal was further analyzed in selected regions of interest where a single or a cluster of nanodiamonds are present. Next, a diamond with a uniform layer of NVs at a depth of 5 nm from the surface, was used. Two areas of the diamond could be identified, an area with magnetic nanoparticle agglomerates and an area of magnetic nanoparticle hybrids, where superparamagnetic nanoparticles are protected within a Wax matrix. ODMR experiments in the presence and absence of an external magnetic field were performed for both particles to distinguish their magnetization. In summary, the addition of an ODMR upgrade has been successfully integrated into a wide-field total internal reflection fluorescence (TIRF) microscope, which allows simultaneous collection of ODMR characterization across the entire field of view. Its magnetic field sensitivity is discussed and compared with state-of-the-art ODMR implementations in confocal microscopy settings using ODMR traces collected on two types of diamond. The simultaneous magnetometry, once optimized, may provide a relevant tool for the study of neuronal networks. |
id |
RCAP_390c7768485babfb493db078dd14a12a |
---|---|
oai_identifier_str |
oai:repositorio.utad.pt:10348/11951 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Implementation of DAQ/FPGA electronics and control software for Optically Detected Magnetic Resonance (ODMR) experiments on a widefield microscopeODMRwidefield fluorescence microscopyThe main objective of this thesis is to develop and test the experimental upgrade of a wide-field fluorescence microscope that will allow optically-detected magnetic resonance (ODMR) experiments to be performed at optical centers in diamonds, known as NitrogenVacancies (NVs). The optically detected magnetic resonance technique may be used as a non-invasive magnetometry technique. Magnetic field detection applications may involve NVs implanted in diamond or fluorescent nanodiamonds. Both of these samples are compatible with the upgraded ODMR setup developed in this thesis. In the future, the ODMR wide-field microscope could be used to investigate magnetic nanostructures with applications in cancer treatment such as magnetic nanoparticles, and in medical research, especially in neurosciences. The NVs in diamond create highly fluorescent color centers, which are the basis of the ODMR technique. By using fluorescent nanodiamonds, the NVs can be localized in close proximity to specific organelles or axons, where temperature or magnetic field measurements are relevant. This thesis describes the implementation of the necessary hardware, such as the microwave generator, the field programmable gate array, and its synchronization with an EMCCD detector implemented in a device control software developed in Python 3.10. Testing of the developed setup included running OMDR experiments on two types of diamond samples. First, a nanodiamond sample was visualized and the ODMR signal was further analyzed in selected regions of interest where a single or a cluster of nanodiamonds are present. Next, a diamond with a uniform layer of NVs at a depth of 5 nm from the surface, was used. Two areas of the diamond could be identified, an area with magnetic nanoparticle agglomerates and an area of magnetic nanoparticle hybrids, where superparamagnetic nanoparticles are protected within a Wax matrix. ODMR experiments in the presence and absence of an external magnetic field were performed for both particles to distinguish their magnetization. In summary, the addition of an ODMR upgrade has been successfully integrated into a wide-field total internal reflection fluorescence (TIRF) microscope, which allows simultaneous collection of ODMR characterization across the entire field of view. Its magnetic field sensitivity is discussed and compared with state-of-the-art ODMR implementations in confocal microscopy settings using ODMR traces collected on two types of diamond. The simultaneous magnetometry, once optimized, may provide a relevant tool for the study of neuronal networks.Esta tese tem como objetivo principal o desenvolvimento e teste da atualização experimental de um microscópio de fluorescência de campo amplo que permitirá realizar experiências de ressonância magnética detetada oticamente (ODMR) em centros óticos em diamantes, conhecidos como Nitrogen-Vacancies (NV). Este centro ótico consiste numa impureza de azoto ligada a uma lacuna na rede cristalina do diamante. A técnica de ressonância magnética detetada oticamente poderá ser usada como uma técnica de magnetometria não invasiva. As aplicações de deteção do campo magnético podem envolver NVs implantados em diamantes ou nanodiamantes fluorescentes. Ambas as amostras são compatíveis com a atualização da configuração de ODMR desenvolvida nesta tese. No futuro, este microscópio de campo amplo com capacidade de ODMR poderá vir a ser usado para investigar nanoestruturas magnéticas para aplicações no tratamento de cancro ou na área de neurociências. Os NVs nos diamantes criam centros coloridos altamente fluorescentes, que são a base da técnica de ODMR. Ao usar nanodiamantes fluorescentes, os NVs podem ser posicionados na proximidade de organelos ou axónios específicos, onde as medições de temperatura ou campo magnético são relevantes. Esta tese descreve a implementação do hardware necessário para a atualização do sistema, tal como o gerador de micro-ondas, a matriz de portas programáveis em campo (FPGA) e a sua sincronização com um detetor (câmara EMCCD) controlado pelo software desenvolvido em Python 3.10. A configuração desenvolvida foi testada através da execução de experiências de ressonância magnética detetada opticamente (CW-OMDR) em dois tipos de amostras de diamante, com excitação contínua via laser. Inicialmente, uma amostra de nanodiamantes foi visualizada e o sinal de ODMR foi analisado numa região de interesse selecionada onde aglomerados de nanodiamantes estavam presentes. De seguida, foi utilizado um diamante que possui uma camada uniforme de NVs a uma profundidade de 5 nm. Duas áreas do diamante puderam ser identificadas, uma área com aglomerados de nanopartículas magnéticas e uma área com nanopartículas magnéticas híbridas. Estas nanopartículas híbridas são compostas por nanopartículas super-paramagnéticas encapsuladas dentro de uma matriz que protege a sua natureza magnética. Testes de ODMR foram realizados na presença e ausência de um campo magnético externo de modo a distinguir a magnetização de cada tipo de partícula. Em resumo, a funcionalidade ODMR foi integrada com sucesso num microscópio de fluorescência de reflexão interna total (TIRF) de campo amplo que permite a recolha simultânea da caracterização de ODMR em todo o campo de visão. A sua sensibilidade é discutida e comparada com implementações de ODMR de última geração em configurações de microscopia confocal utilizando sinais de ODMR recolhidos em dois tipos de diamante. Esta técnica de microscopia de campo amplo com magnetometria simultânea, uma vez otimizada, pode tornar-se uma ferramenta relevante para o estudo de redes neuronais.2023-11-21T15:56:19Z2023-02-10T00:00:00Z2023-02-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/10348/11951engmetadata only accessinfo:eu-repo/semantics/openAccessTeixeira, Ana Amélia Carvalhoreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-03T02:00:48Zoai:repositorio.utad.pt:10348/11951Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:03:09.044943Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Implementation of DAQ/FPGA electronics and control software for Optically Detected Magnetic Resonance (ODMR) experiments on a widefield microscope |
title |
Implementation of DAQ/FPGA electronics and control software for Optically Detected Magnetic Resonance (ODMR) experiments on a widefield microscope |
spellingShingle |
Implementation of DAQ/FPGA electronics and control software for Optically Detected Magnetic Resonance (ODMR) experiments on a widefield microscope Teixeira, Ana Amélia Carvalho ODMR widefield fluorescence microscopy |
title_short |
Implementation of DAQ/FPGA electronics and control software for Optically Detected Magnetic Resonance (ODMR) experiments on a widefield microscope |
title_full |
Implementation of DAQ/FPGA electronics and control software for Optically Detected Magnetic Resonance (ODMR) experiments on a widefield microscope |
title_fullStr |
Implementation of DAQ/FPGA electronics and control software for Optically Detected Magnetic Resonance (ODMR) experiments on a widefield microscope |
title_full_unstemmed |
Implementation of DAQ/FPGA electronics and control software for Optically Detected Magnetic Resonance (ODMR) experiments on a widefield microscope |
title_sort |
Implementation of DAQ/FPGA electronics and control software for Optically Detected Magnetic Resonance (ODMR) experiments on a widefield microscope |
author |
Teixeira, Ana Amélia Carvalho |
author_facet |
Teixeira, Ana Amélia Carvalho |
author_role |
author |
dc.contributor.author.fl_str_mv |
Teixeira, Ana Amélia Carvalho |
dc.subject.por.fl_str_mv |
ODMR widefield fluorescence microscopy |
topic |
ODMR widefield fluorescence microscopy |
description |
The main objective of this thesis is to develop and test the experimental upgrade of a wide-field fluorescence microscope that will allow optically-detected magnetic resonance (ODMR) experiments to be performed at optical centers in diamonds, known as NitrogenVacancies (NVs). The optically detected magnetic resonance technique may be used as a non-invasive magnetometry technique. Magnetic field detection applications may involve NVs implanted in diamond or fluorescent nanodiamonds. Both of these samples are compatible with the upgraded ODMR setup developed in this thesis. In the future, the ODMR wide-field microscope could be used to investigate magnetic nanostructures with applications in cancer treatment such as magnetic nanoparticles, and in medical research, especially in neurosciences. The NVs in diamond create highly fluorescent color centers, which are the basis of the ODMR technique. By using fluorescent nanodiamonds, the NVs can be localized in close proximity to specific organelles or axons, where temperature or magnetic field measurements are relevant. This thesis describes the implementation of the necessary hardware, such as the microwave generator, the field programmable gate array, and its synchronization with an EMCCD detector implemented in a device control software developed in Python 3.10. Testing of the developed setup included running OMDR experiments on two types of diamond samples. First, a nanodiamond sample was visualized and the ODMR signal was further analyzed in selected regions of interest where a single or a cluster of nanodiamonds are present. Next, a diamond with a uniform layer of NVs at a depth of 5 nm from the surface, was used. Two areas of the diamond could be identified, an area with magnetic nanoparticle agglomerates and an area of magnetic nanoparticle hybrids, where superparamagnetic nanoparticles are protected within a Wax matrix. ODMR experiments in the presence and absence of an external magnetic field were performed for both particles to distinguish their magnetization. In summary, the addition of an ODMR upgrade has been successfully integrated into a wide-field total internal reflection fluorescence (TIRF) microscope, which allows simultaneous collection of ODMR characterization across the entire field of view. Its magnetic field sensitivity is discussed and compared with state-of-the-art ODMR implementations in confocal microscopy settings using ODMR traces collected on two types of diamond. The simultaneous magnetometry, once optimized, may provide a relevant tool for the study of neuronal networks. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-21T15:56:19Z 2023-02-10T00:00:00Z 2023-02-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10348/11951 |
url |
http://hdl.handle.net/10348/11951 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137116779708416 |