Multifunctional films from porous matrices

Detalhes bibliográficos
Autor(a) principal: Silva, Carla Florbela Ferreira Pinto da
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/9913
Resumo: Multiferroic materials, that exhibit both ferroelectric and ferromagnetic properties, have attracted considerable interest in the scientific community due to its potential for novel applications in electronic devices as well as for physics and materials science underlying its multifunctionality. In multiferroic composites, the coupling magnetoelectric is due to elastic interaction between ferromagnetic and ferroelectric phases caused by the piezoelectric and magnetostrictive effect. The strategy of this work encompass: i) the preparation of porous thin films of ferroelectric barium titanate; ii) the synthesis of magnetic nanoparticles to be incorporated in the previous porous films and iii) the functionalization of the ferroelectric porous matrix aiming to fabricate multiferroic nano composite. The composite system BaTiO3-CoFe2O4 was chosen due to the piezoelectricity of BaTiO3, thus allowing strong elastic interaction between the two phases, and good magnetostriction of CoFe2O4. For materials synthesis, easy, environmental friendly and cost effective methodologies were adopted: i) evaporation induced selfassembly (EISA) assisted by dip-coating to prepare porous ferroelectric matrix; ii) hydrothermal synthesis to prepare magnetic nanoparticles and iii) electrophoretic deposition for functionalization. The BaTiO3 thin films were obtained using polystyrene-poly(ethylene oxide) block co-polymer (PS-b-PEO) as template to create porosity. The effect of a polymer with different molecular weights (Mw) in the creation of porosity, concentration of block co-polymer, type of annealing and withdrawal rate of the dipcoating were studied in this work. The porous microstructure of BaTiO3 thin films were studied by SEM. Decomposition of the solvents and BaTiO3 crystallization was studied by DTA/TGA. The topography and piezoelectric behaviour of porous films was analysed by AFM/ PFM. CoFe2O4 nanoparticles were obtained by hydrothermal synthesis. The effect of temperature and time of the hydrothermal synthesis, the addition of polyvinylpyrrolidone (PVP) as additive with different concentrations, and effect of precipitating (NaOH) and Co2+/Fe3+ concentration were studied in order to prepare nanoparticles with desired size and magnetic properties. The shape, size, dispersion and crystallinity of the nanoparticles were studied by various techniques such as TEM, BET and XRD. The crystallite size was calculated by Scherrer equation. The magnetic properties were evaluated by SQUID magnetometer. The results show that with the increase of temperature and time synthesis the particle and crystallite size increases too. The saturation magnetization depends of particles size, increasing with particle size increase. The increasing particle size from 12.9 to 16.1 nm provokes an increase in saturation magnetization from 53.7 to 73.2 emu/g. In time of hydrothermal synthesis studies, it was observed that a antiferromagnetic phase appear, hematite (α-Fe2O3). The presence of this phase damaged drastically the magnetic properties to 8.2 emu/g in the case of a sample prepared over 24 h. The PVP addition does not affect the shape of nanoparticles however favours their growth from 20.1 to 23.6. In term of magnetic properties, no influence was observed. The increase of Co2+/Fe3+ and NaOH concentration induces growth of nanoparticles. The functionalization of BaTiO3 films was made by electrophoretic deposition (EPD). Initially, the process optimization was necessary by studying the different parameters related with deposition such as: applied voltage, deposition time and suspension type. This studies permits to conclude that with time increasing, the amount of nanoparticles deposited increases too. It was observed that, despite the optimization of EPD, it is important the use a good quality substrate that can afford voltage application.
id RCAP_3911f9f75820a12e6d49a1b8a27ad4a9
oai_identifier_str oai:ria.ua.pt:10773/9913
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Multifunctional films from porous matricesEngenharia de materiaisFilmes finos ferroeléctricosNanopartículasDeposição electroforéticaMultiferroic materials, that exhibit both ferroelectric and ferromagnetic properties, have attracted considerable interest in the scientific community due to its potential for novel applications in electronic devices as well as for physics and materials science underlying its multifunctionality. In multiferroic composites, the coupling magnetoelectric is due to elastic interaction between ferromagnetic and ferroelectric phases caused by the piezoelectric and magnetostrictive effect. The strategy of this work encompass: i) the preparation of porous thin films of ferroelectric barium titanate; ii) the synthesis of magnetic nanoparticles to be incorporated in the previous porous films and iii) the functionalization of the ferroelectric porous matrix aiming to fabricate multiferroic nano composite. The composite system BaTiO3-CoFe2O4 was chosen due to the piezoelectricity of BaTiO3, thus allowing strong elastic interaction between the two phases, and good magnetostriction of CoFe2O4. For materials synthesis, easy, environmental friendly and cost effective methodologies were adopted: i) evaporation induced selfassembly (EISA) assisted by dip-coating to prepare porous ferroelectric matrix; ii) hydrothermal synthesis to prepare magnetic nanoparticles and iii) electrophoretic deposition for functionalization. The BaTiO3 thin films were obtained using polystyrene-poly(ethylene oxide) block co-polymer (PS-b-PEO) as template to create porosity. The effect of a polymer with different molecular weights (Mw) in the creation of porosity, concentration of block co-polymer, type of annealing and withdrawal rate of the dipcoating were studied in this work. The porous microstructure of BaTiO3 thin films were studied by SEM. Decomposition of the solvents and BaTiO3 crystallization was studied by DTA/TGA. The topography and piezoelectric behaviour of porous films was analysed by AFM/ PFM. CoFe2O4 nanoparticles were obtained by hydrothermal synthesis. The effect of temperature and time of the hydrothermal synthesis, the addition of polyvinylpyrrolidone (PVP) as additive with different concentrations, and effect of precipitating (NaOH) and Co2+/Fe3+ concentration were studied in order to prepare nanoparticles with desired size and magnetic properties. The shape, size, dispersion and crystallinity of the nanoparticles were studied by various techniques such as TEM, BET and XRD. The crystallite size was calculated by Scherrer equation. The magnetic properties were evaluated by SQUID magnetometer. The results show that with the increase of temperature and time synthesis the particle and crystallite size increases too. The saturation magnetization depends of particles size, increasing with particle size increase. The increasing particle size from 12.9 to 16.1 nm provokes an increase in saturation magnetization from 53.7 to 73.2 emu/g. In time of hydrothermal synthesis studies, it was observed that a antiferromagnetic phase appear, hematite (α-Fe2O3). The presence of this phase damaged drastically the magnetic properties to 8.2 emu/g in the case of a sample prepared over 24 h. The PVP addition does not affect the shape of nanoparticles however favours their growth from 20.1 to 23.6. In term of magnetic properties, no influence was observed. The increase of Co2+/Fe3+ and NaOH concentration induces growth of nanoparticles. The functionalization of BaTiO3 films was made by electrophoretic deposition (EPD). Initially, the process optimization was necessary by studying the different parameters related with deposition such as: applied voltage, deposition time and suspension type. This studies permits to conclude that with time increasing, the amount of nanoparticles deposited increases too. It was observed that, despite the optimization of EPD, it is important the use a good quality substrate that can afford voltage application.Materiais multiferróicos são por definição materiais que exibem simultaneamente propriedades ferroelétricas e ferromagnéticas. Dado o seu potencial de aplicação tanto nos em dispositivos electrónicos existentes como em novos dispositivos devido ao seu carácter multifuncional, os materiais multiferróicos têm atraído consideravelmente o interesse da comunidade científica. Infelizmente os materiais multiferróicos existentes são raros e exibem propriedades bastante inferiores às necessárias para a sua aplicação. Assim é absolutamente fundamental desenvolver materiais multiferróicos compósitos. Em compósitos multiferróicos, o acoplamento magnetoelétrico deve-se à interação elástica entre as fases ferroelétrica e ferromagnética causada pelo efeito piezoeléctrico e magnetostritivo. A estratégia deste trabalho engloba: i) a preparação de filmes finos porosos de titanato de bário ferroelétrico; ii) a síntese de nanopartículas magnéticas para serem incorporadas nos filmes porosos e iii) a funcionalização da matriz ferroelétrica porosa visando fabricar um nano compósito multiferróico. O sistema composto BaTiO3-CoFe2O4 foi escolhido devido à piezoeletricidade do BaTiO3, permitindo uma interação elástica forte entre as duas fases, e boa magnetostrição do CoFe2O4. Para a síntese dos materiais, foram adotadas metodologias simples, de baixo custo e amigas do ambiente: i) a evaporation induced self-assembly (EISA) assistida por dip-coating para preparar a matriz ferroelétrica porosa; ii) síntese hidrotermal para preparar nanopartículas magnéticas e iii) deposição eletroforética para a funcionalização dos filmes porosos. Os filmes finos porosos de BaTiO3 foram obtidos utilizando o co-polímero em bloco poliestireno-poli(óxido de etileno) - PS-b-PEO para criar a porosidade. Foram estudados os efeito da variação: i) do peso molecular do co-polímero; ii) da concentração do copolímero em bloco; iii) do tipo de tratamento térmico e iv) da taxa de retirada da deposição por dip-coating. A microestrutura porosa dos filmes finos de BaTiO3 foi estudada por SEM. A decomposição dos solventes e a cristalização do BaTiO3 foram seguidas por análises térmicas. A topografia e o comportamento piezoeléctrico dos filmes porosas foram analisados por AFM/ PFM. As nanopartículas de CoFe2O4 foram obtidas por síntese hidrotermal. Foram estudados o efeito da temperatura, do tempo da síntese hidrotermal, da adição de polivinilpirrolidona (PVP) como aditivo em diferentes concentrações, e os efeitos da concentração do agente precipitante (NaOH) e dos iões Co2+/Fe3+ com o objectivo de preparar nanopartículas com tamanho e propriedades magnéticas adequadas. A forma, o tamanho, dispersão e cristalinidade das nanopartículas foram estudados através das técnicas TEM, BET e XRD. O tamanho da cristalite foi calculado pela equação de Scherrer. As propriedades magnéticas foram avaliadas por medidas de magnetização de SQUID. Os resultados mostram que aumento da temperatura e do tempo da síntese hidrotermal contribui para o aumento do tamanho da partícula e da cristalite. A magnetização de saturação aumenta com o aumento do tamanho das partículas. O aumento do tamanho das partículas de 12.9 para 16.1 nm provocou um aumento na magnetização de saturação de 53.7 para 73.2 emu/ g. Nos estudos do tempo de síntese hidrotermal observou-se o aparecimento de uma fase antiferromagnética, hematite (α- Fe2O3). A presença desta fase prejudicou drasticamente as propriedades magnéticas – 8.2 emu/ g, no caso da amostra preparada durante 24 h. A adição de PVP não afecta a forma das nanopartículas no entanto favorece o seu crescimento de 20.1 para 23.6 nm. Relativamente às propriedades magnéticas, nenhuma influência foi observada. O aumento da concentração de Co2+/Fe3+ e de NaOH induz o crescimento de nanopartículas e, consequentemente, aumenta a magnetização de saturação. A funcionalização dos filmes de BaTiO3 foi feita por deposição eletroforética (EPD). Inicialmente, foi necessária a otimização do processo, estudando os diferentes parâmetros relacionados com a deposição, tais como: tensão aplicada, tempo de deposição e tipo de suspensão. Este estudo permitiu concluir que, com o aumento do tempo, a quantidade de nanopartículas depositadas também aumenta. Observou-se que, para fazer EPD, é importante o uso de um substrato de boa qualidade que seja estável à aplicação de tensão.Universidade de Aveiro2013-03-15T12:52:26Z2013-01-14T00:00:00Z2013-01-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/9913engSilva, Carla Florbela Ferreira Pinto dainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:17:12Zoai:ria.ua.pt:10773/9913Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:46:38.260334Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Multifunctional films from porous matrices
title Multifunctional films from porous matrices
spellingShingle Multifunctional films from porous matrices
Silva, Carla Florbela Ferreira Pinto da
Engenharia de materiais
Filmes finos ferroeléctricos
Nanopartículas
Deposição electroforética
title_short Multifunctional films from porous matrices
title_full Multifunctional films from porous matrices
title_fullStr Multifunctional films from porous matrices
title_full_unstemmed Multifunctional films from porous matrices
title_sort Multifunctional films from porous matrices
author Silva, Carla Florbela Ferreira Pinto da
author_facet Silva, Carla Florbela Ferreira Pinto da
author_role author
dc.contributor.author.fl_str_mv Silva, Carla Florbela Ferreira Pinto da
dc.subject.por.fl_str_mv Engenharia de materiais
Filmes finos ferroeléctricos
Nanopartículas
Deposição electroforética
topic Engenharia de materiais
Filmes finos ferroeléctricos
Nanopartículas
Deposição electroforética
description Multiferroic materials, that exhibit both ferroelectric and ferromagnetic properties, have attracted considerable interest in the scientific community due to its potential for novel applications in electronic devices as well as for physics and materials science underlying its multifunctionality. In multiferroic composites, the coupling magnetoelectric is due to elastic interaction between ferromagnetic and ferroelectric phases caused by the piezoelectric and magnetostrictive effect. The strategy of this work encompass: i) the preparation of porous thin films of ferroelectric barium titanate; ii) the synthesis of magnetic nanoparticles to be incorporated in the previous porous films and iii) the functionalization of the ferroelectric porous matrix aiming to fabricate multiferroic nano composite. The composite system BaTiO3-CoFe2O4 was chosen due to the piezoelectricity of BaTiO3, thus allowing strong elastic interaction between the two phases, and good magnetostriction of CoFe2O4. For materials synthesis, easy, environmental friendly and cost effective methodologies were adopted: i) evaporation induced selfassembly (EISA) assisted by dip-coating to prepare porous ferroelectric matrix; ii) hydrothermal synthesis to prepare magnetic nanoparticles and iii) electrophoretic deposition for functionalization. The BaTiO3 thin films were obtained using polystyrene-poly(ethylene oxide) block co-polymer (PS-b-PEO) as template to create porosity. The effect of a polymer with different molecular weights (Mw) in the creation of porosity, concentration of block co-polymer, type of annealing and withdrawal rate of the dipcoating were studied in this work. The porous microstructure of BaTiO3 thin films were studied by SEM. Decomposition of the solvents and BaTiO3 crystallization was studied by DTA/TGA. The topography and piezoelectric behaviour of porous films was analysed by AFM/ PFM. CoFe2O4 nanoparticles were obtained by hydrothermal synthesis. The effect of temperature and time of the hydrothermal synthesis, the addition of polyvinylpyrrolidone (PVP) as additive with different concentrations, and effect of precipitating (NaOH) and Co2+/Fe3+ concentration were studied in order to prepare nanoparticles with desired size and magnetic properties. The shape, size, dispersion and crystallinity of the nanoparticles were studied by various techniques such as TEM, BET and XRD. The crystallite size was calculated by Scherrer equation. The magnetic properties were evaluated by SQUID magnetometer. The results show that with the increase of temperature and time synthesis the particle and crystallite size increases too. The saturation magnetization depends of particles size, increasing with particle size increase. The increasing particle size from 12.9 to 16.1 nm provokes an increase in saturation magnetization from 53.7 to 73.2 emu/g. In time of hydrothermal synthesis studies, it was observed that a antiferromagnetic phase appear, hematite (α-Fe2O3). The presence of this phase damaged drastically the magnetic properties to 8.2 emu/g in the case of a sample prepared over 24 h. The PVP addition does not affect the shape of nanoparticles however favours their growth from 20.1 to 23.6. In term of magnetic properties, no influence was observed. The increase of Co2+/Fe3+ and NaOH concentration induces growth of nanoparticles. The functionalization of BaTiO3 films was made by electrophoretic deposition (EPD). Initially, the process optimization was necessary by studying the different parameters related with deposition such as: applied voltage, deposition time and suspension type. This studies permits to conclude that with time increasing, the amount of nanoparticles deposited increases too. It was observed that, despite the optimization of EPD, it is important the use a good quality substrate that can afford voltage application.
publishDate 2013
dc.date.none.fl_str_mv 2013-03-15T12:52:26Z
2013-01-14T00:00:00Z
2013-01-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/9913
url http://hdl.handle.net/10773/9913
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Aveiro
publisher.none.fl_str_mv Universidade de Aveiro
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137518231224320