Classical canonical transformation theory as a tool to describe multidimensional tunnelling in reactive scattering. Hopping method revisited and collinear H+H2 exchange reaction near the classical threshold

Detalhes bibliográficos
Autor(a) principal: Mil'nikov, Gennady V.
Data de Publicação: 1999
Outros Autores: Varandas, António J. C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/10715
https://doi.org/10.1039/a808551j
Resumo: Classical canonical perturbation theory is applied in the vicinity of the saddle point for a chemical reaction. This is done by applying successive canonical transformations in the scope of the Gustavson–Birkhoff approach. It is shown that the calculated approximate classical integrals of motion can be used to describe classically forbidden tunnelling processes. They are also organically embedded into a hopping method to incorporate tunnelling effects into classical trajectory simulations of chemical reactions. The applicability of the proposed scheme is demonstrated for the collinear H+H2 exchange reaction using the double many-body expansion potential energy surface.
id RCAP_392fd38e54c93b7bda308b6d24a492e5
oai_identifier_str oai:estudogeral.uc.pt:10316/10715
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Classical canonical transformation theory as a tool to describe multidimensional tunnelling in reactive scattering. Hopping method revisited and collinear H+H2 exchange reaction near the classical thresholdClassical canonical perturbation theory is applied in the vicinity of the saddle point for a chemical reaction. This is done by applying successive canonical transformations in the scope of the Gustavson–Birkhoff approach. It is shown that the calculated approximate classical integrals of motion can be used to describe classically forbidden tunnelling processes. They are also organically embedded into a hopping method to incorporate tunnelling effects into classical trajectory simulations of chemical reactions. The applicability of the proposed scheme is demonstrated for the collinear H+H2 exchange reaction using the double many-body expansion potential energy surface.Fundação para a Ciência e Tecnologia, programas PRAXIS XXI e FEDER.Royal Society of Chemistry1999info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/10715http://hdl.handle.net/10316/10715https://doi.org/10.1039/a808551jengPhysical Chemistry Chemical Physics. 1 (1999) 1071-10791463-9076Mil'nikov, Gennady V.Varandas, António J. C.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-25T13:15:59Zoai:estudogeral.uc.pt:10316/10715Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:01:36.698578Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Classical canonical transformation theory as a tool to describe multidimensional tunnelling in reactive scattering. Hopping method revisited and collinear H+H2 exchange reaction near the classical threshold
title Classical canonical transformation theory as a tool to describe multidimensional tunnelling in reactive scattering. Hopping method revisited and collinear H+H2 exchange reaction near the classical threshold
spellingShingle Classical canonical transformation theory as a tool to describe multidimensional tunnelling in reactive scattering. Hopping method revisited and collinear H+H2 exchange reaction near the classical threshold
Mil'nikov, Gennady V.
title_short Classical canonical transformation theory as a tool to describe multidimensional tunnelling in reactive scattering. Hopping method revisited and collinear H+H2 exchange reaction near the classical threshold
title_full Classical canonical transformation theory as a tool to describe multidimensional tunnelling in reactive scattering. Hopping method revisited and collinear H+H2 exchange reaction near the classical threshold
title_fullStr Classical canonical transformation theory as a tool to describe multidimensional tunnelling in reactive scattering. Hopping method revisited and collinear H+H2 exchange reaction near the classical threshold
title_full_unstemmed Classical canonical transformation theory as a tool to describe multidimensional tunnelling in reactive scattering. Hopping method revisited and collinear H+H2 exchange reaction near the classical threshold
title_sort Classical canonical transformation theory as a tool to describe multidimensional tunnelling in reactive scattering. Hopping method revisited and collinear H+H2 exchange reaction near the classical threshold
author Mil'nikov, Gennady V.
author_facet Mil'nikov, Gennady V.
Varandas, António J. C.
author_role author
author2 Varandas, António J. C.
author2_role author
dc.contributor.author.fl_str_mv Mil'nikov, Gennady V.
Varandas, António J. C.
description Classical canonical perturbation theory is applied in the vicinity of the saddle point for a chemical reaction. This is done by applying successive canonical transformations in the scope of the Gustavson–Birkhoff approach. It is shown that the calculated approximate classical integrals of motion can be used to describe classically forbidden tunnelling processes. They are also organically embedded into a hopping method to incorporate tunnelling effects into classical trajectory simulations of chemical reactions. The applicability of the proposed scheme is demonstrated for the collinear H+H2 exchange reaction using the double many-body expansion potential energy surface.
publishDate 1999
dc.date.none.fl_str_mv 1999
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/10715
http://hdl.handle.net/10316/10715
https://doi.org/10.1039/a808551j
url http://hdl.handle.net/10316/10715
https://doi.org/10.1039/a808551j
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Chemistry Chemical Physics. 1 (1999) 1071-1079
1463-9076
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133906954354688