A Methodology for Improving Tear Film Lipid Layer Classification

Detalhes bibliográficos
Autor(a) principal: Beatriz Remeseiro López
Data de Publicação: 2014
Outros Autores: Bolon Canedo,V, Peteiro Barral,D, Alonso Betanzos,A, Guijarro Berdinas,B, Mosquera,A, Penedo,MG, Sanchez Marono,N
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/6619
http://dx.doi.org/10.1109/jbhi.2013.2294732
Resumo: Dry eye is a symptomatic disease which affects a wide range of population and has a negative impact on their daily activities. Its diagnosis can be achieved by analyzing the interference patterns of the tear film lipid layer and by classifying them into one of the Guillon categories. The manual process done by experts is not only affected by subjective factors but is also very time consuming. In this paper we propose a general methodology to the automatic classification of tear film lipid layer, using color and texture information to characterize the image and feature selection methods to reduce the processing time. The adequacy of the proposed methodology was demonstrated since it achieves classification rates over 97% while maintaining robustness and provides unbiased results. Also, it can be applied in real time, and so allows important time savings for the experts.
id RCAP_396cadbb4fadedcb9e90e6aba64a6ea6
oai_identifier_str oai:repositorio.inesctec.pt:123456789/6619
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A Methodology for Improving Tear Film Lipid Layer ClassificationDry eye is a symptomatic disease which affects a wide range of population and has a negative impact on their daily activities. Its diagnosis can be achieved by analyzing the interference patterns of the tear film lipid layer and by classifying them into one of the Guillon categories. The manual process done by experts is not only affected by subjective factors but is also very time consuming. In this paper we propose a general methodology to the automatic classification of tear film lipid layer, using color and texture information to characterize the image and feature selection methods to reduce the processing time. The adequacy of the proposed methodology was demonstrated since it achieves classification rates over 97% while maintaining robustness and provides unbiased results. Also, it can be applied in real time, and so allows important time savings for the experts.2018-01-17T10:58:50Z2014-01-01T00:00:00Z2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/6619http://dx.doi.org/10.1109/jbhi.2013.2294732engBeatriz Remeseiro LópezBolon Canedo,VPeteiro Barral,DAlonso Betanzos,AGuijarro Berdinas,BMosquera,APenedo,MGSanchez Marono,Ninfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:55Zoai:repositorio.inesctec.pt:123456789/6619Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:53:47.498700Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A Methodology for Improving Tear Film Lipid Layer Classification
title A Methodology for Improving Tear Film Lipid Layer Classification
spellingShingle A Methodology for Improving Tear Film Lipid Layer Classification
Beatriz Remeseiro López
title_short A Methodology for Improving Tear Film Lipid Layer Classification
title_full A Methodology for Improving Tear Film Lipid Layer Classification
title_fullStr A Methodology for Improving Tear Film Lipid Layer Classification
title_full_unstemmed A Methodology for Improving Tear Film Lipid Layer Classification
title_sort A Methodology for Improving Tear Film Lipid Layer Classification
author Beatriz Remeseiro López
author_facet Beatriz Remeseiro López
Bolon Canedo,V
Peteiro Barral,D
Alonso Betanzos,A
Guijarro Berdinas,B
Mosquera,A
Penedo,MG
Sanchez Marono,N
author_role author
author2 Bolon Canedo,V
Peteiro Barral,D
Alonso Betanzos,A
Guijarro Berdinas,B
Mosquera,A
Penedo,MG
Sanchez Marono,N
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Beatriz Remeseiro López
Bolon Canedo,V
Peteiro Barral,D
Alonso Betanzos,A
Guijarro Berdinas,B
Mosquera,A
Penedo,MG
Sanchez Marono,N
description Dry eye is a symptomatic disease which affects a wide range of population and has a negative impact on their daily activities. Its diagnosis can be achieved by analyzing the interference patterns of the tear film lipid layer and by classifying them into one of the Guillon categories. The manual process done by experts is not only affected by subjective factors but is also very time consuming. In this paper we propose a general methodology to the automatic classification of tear film lipid layer, using color and texture information to characterize the image and feature selection methods to reduce the processing time. The adequacy of the proposed methodology was demonstrated since it achieves classification rates over 97% while maintaining robustness and provides unbiased results. Also, it can be applied in real time, and so allows important time savings for the experts.
publishDate 2014
dc.date.none.fl_str_mv 2014-01-01T00:00:00Z
2014
2018-01-17T10:58:50Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/6619
http://dx.doi.org/10.1109/jbhi.2013.2294732
url http://repositorio.inesctec.pt/handle/123456789/6619
http://dx.doi.org/10.1109/jbhi.2013.2294732
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131611874197504