Sensor fusion approach for multiple human motion detection for indoor surveillance use-case
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/85593 |
Resumo: | Multi-human detection and tracking in indoor surveillance is a challenging task due to various factors such as occlusions, illumination changes, and complex human-human and human-object interactions. In this study, we address these challenges by exploring the benefits of a low-level sensor fusion approach that combines grayscale and neuromorphic vision sensor (NVS) data. We first generate a custom dataset using an NVS camera in an indoor environment. We then conduct a comprehensive study by experimenting with different image features and deep learning networks, followed by a multi-input fusion strategy to optimize our experiments with respect to overfitting. Our primary goal is to determine the best input feature types for multi-human motion detection using statistical analysis. We find that there is a significant difference between the input features of optimized backbones, with the best strategy depending on the amount of available data. Specifically, under a low-data regime, event-based frames seem to be the preferred input feature type, while higher data availability benefits the combined use of grayscale and optical flow features. Our results demonstrate the potential of sensor fusion and deep learning techniques for multi-human tracking in indoor surveillance, although it is acknowledged that further studies are needed to confirm our findings. |
id |
RCAP_3ae8e0064b5999572476c336d545401c |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/85593 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Sensor fusion approach for multiple human motion detection for indoor surveillance use-caseNeuromorphic vision sensorMultiple human motion detection and trackingMulti-modal dataSensor fusionIndoor surveillanceEvent-based dataScience & TechnologyMulti-human detection and tracking in indoor surveillance is a challenging task due to various factors such as occlusions, illumination changes, and complex human-human and human-object interactions. In this study, we address these challenges by exploring the benefits of a low-level sensor fusion approach that combines grayscale and neuromorphic vision sensor (NVS) data. We first generate a custom dataset using an NVS camera in an indoor environment. We then conduct a comprehensive study by experimenting with different image features and deep learning networks, followed by a multi-input fusion strategy to optimize our experiments with respect to overfitting. Our primary goal is to determine the best input feature types for multi-human motion detection using statistical analysis. We find that there is a significant difference between the input features of optimized backbones, with the best strategy depending on the amount of available data. Specifically, under a low-data regime, event-based frames seem to be the preferred input feature type, while higher data availability benefits the combined use of grayscale and optical flow features. Our results demonstrate the potential of sensor fusion and deep learning techniques for multi-human tracking in indoor surveillance, although it is acknowledged that further studies are needed to confirm our findings.This work has been supported by FCT–Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020.Multidisciplinary Digital Publishing InstituteUniversidade do MinhoAbbasi, AliQueirós, SandroCosta, Nuno Miguel CerqueiraFonseca, Jaime C.Borges, João2023-04-142023-04-14T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/85593engAbbasi, A.; Queirós, S.; da Costa, N.M.C.; Fonseca, J.C.; Borges, J. Sensor Fusion Approach for Multiple Human Motion Detection for Indoor Surveillance Use-Case. Sensors 2023, 23, 3993. https://doi.org/10.3390/s230839931424-82201424-822010.3390/s2308399337112337https://www.mdpi.com/1424-8220/23/8/3993info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:33:17Zoai:repositorium.sdum.uminho.pt:1822/85593Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:28:47.282120Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Sensor fusion approach for multiple human motion detection for indoor surveillance use-case |
title |
Sensor fusion approach for multiple human motion detection for indoor surveillance use-case |
spellingShingle |
Sensor fusion approach for multiple human motion detection for indoor surveillance use-case Abbasi, Ali Neuromorphic vision sensor Multiple human motion detection and tracking Multi-modal data Sensor fusion Indoor surveillance Event-based data Science & Technology |
title_short |
Sensor fusion approach for multiple human motion detection for indoor surveillance use-case |
title_full |
Sensor fusion approach for multiple human motion detection for indoor surveillance use-case |
title_fullStr |
Sensor fusion approach for multiple human motion detection for indoor surveillance use-case |
title_full_unstemmed |
Sensor fusion approach for multiple human motion detection for indoor surveillance use-case |
title_sort |
Sensor fusion approach for multiple human motion detection for indoor surveillance use-case |
author |
Abbasi, Ali |
author_facet |
Abbasi, Ali Queirós, Sandro Costa, Nuno Miguel Cerqueira Fonseca, Jaime C. Borges, João |
author_role |
author |
author2 |
Queirós, Sandro Costa, Nuno Miguel Cerqueira Fonseca, Jaime C. Borges, João |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Abbasi, Ali Queirós, Sandro Costa, Nuno Miguel Cerqueira Fonseca, Jaime C. Borges, João |
dc.subject.por.fl_str_mv |
Neuromorphic vision sensor Multiple human motion detection and tracking Multi-modal data Sensor fusion Indoor surveillance Event-based data Science & Technology |
topic |
Neuromorphic vision sensor Multiple human motion detection and tracking Multi-modal data Sensor fusion Indoor surveillance Event-based data Science & Technology |
description |
Multi-human detection and tracking in indoor surveillance is a challenging task due to various factors such as occlusions, illumination changes, and complex human-human and human-object interactions. In this study, we address these challenges by exploring the benefits of a low-level sensor fusion approach that combines grayscale and neuromorphic vision sensor (NVS) data. We first generate a custom dataset using an NVS camera in an indoor environment. We then conduct a comprehensive study by experimenting with different image features and deep learning networks, followed by a multi-input fusion strategy to optimize our experiments with respect to overfitting. Our primary goal is to determine the best input feature types for multi-human motion detection using statistical analysis. We find that there is a significant difference between the input features of optimized backbones, with the best strategy depending on the amount of available data. Specifically, under a low-data regime, event-based frames seem to be the preferred input feature type, while higher data availability benefits the combined use of grayscale and optical flow features. Our results demonstrate the potential of sensor fusion and deep learning techniques for multi-human tracking in indoor surveillance, although it is acknowledged that further studies are needed to confirm our findings. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04-14 2023-04-14T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/85593 |
url |
https://hdl.handle.net/1822/85593 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Abbasi, A.; Queirós, S.; da Costa, N.M.C.; Fonseca, J.C.; Borges, J. Sensor Fusion Approach for Multiple Human Motion Detection for Indoor Surveillance Use-Case. Sensors 2023, 23, 3993. https://doi.org/10.3390/s23083993 1424-8220 1424-8220 10.3390/s23083993 37112337 https://www.mdpi.com/1424-8220/23/8/3993 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132784423337984 |