Sensor fusion approach for multiple human motion detection for indoor surveillance use-case

Detalhes bibliográficos
Autor(a) principal: Abbasi, Ali
Data de Publicação: 2023
Outros Autores: Queirós, Sandro, Costa, Nuno Miguel Cerqueira, Fonseca, Jaime C., Borges, João
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/85593
Resumo: Multi-human detection and tracking in indoor surveillance is a challenging task due to various factors such as occlusions, illumination changes, and complex human-human and human-object interactions. In this study, we address these challenges by exploring the benefits of a low-level sensor fusion approach that combines grayscale and neuromorphic vision sensor (NVS) data. We first generate a custom dataset using an NVS camera in an indoor environment. We then conduct a comprehensive study by experimenting with different image features and deep learning networks, followed by a multi-input fusion strategy to optimize our experiments with respect to overfitting. Our primary goal is to determine the best input feature types for multi-human motion detection using statistical analysis. We find that there is a significant difference between the input features of optimized backbones, with the best strategy depending on the amount of available data. Specifically, under a low-data regime, event-based frames seem to be the preferred input feature type, while higher data availability benefits the combined use of grayscale and optical flow features. Our results demonstrate the potential of sensor fusion and deep learning techniques for multi-human tracking in indoor surveillance, although it is acknowledged that further studies are needed to confirm our findings.
id RCAP_3ae8e0064b5999572476c336d545401c
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/85593
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Sensor fusion approach for multiple human motion detection for indoor surveillance use-caseNeuromorphic vision sensorMultiple human motion detection and trackingMulti-modal dataSensor fusionIndoor surveillanceEvent-based dataScience & TechnologyMulti-human detection and tracking in indoor surveillance is a challenging task due to various factors such as occlusions, illumination changes, and complex human-human and human-object interactions. In this study, we address these challenges by exploring the benefits of a low-level sensor fusion approach that combines grayscale and neuromorphic vision sensor (NVS) data. We first generate a custom dataset using an NVS camera in an indoor environment. We then conduct a comprehensive study by experimenting with different image features and deep learning networks, followed by a multi-input fusion strategy to optimize our experiments with respect to overfitting. Our primary goal is to determine the best input feature types for multi-human motion detection using statistical analysis. We find that there is a significant difference between the input features of optimized backbones, with the best strategy depending on the amount of available data. Specifically, under a low-data regime, event-based frames seem to be the preferred input feature type, while higher data availability benefits the combined use of grayscale and optical flow features. Our results demonstrate the potential of sensor fusion and deep learning techniques for multi-human tracking in indoor surveillance, although it is acknowledged that further studies are needed to confirm our findings.This work has been supported by FCT–Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020.Multidisciplinary Digital Publishing InstituteUniversidade do MinhoAbbasi, AliQueirós, SandroCosta, Nuno Miguel CerqueiraFonseca, Jaime C.Borges, João2023-04-142023-04-14T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/85593engAbbasi, A.; Queirós, S.; da Costa, N.M.C.; Fonseca, J.C.; Borges, J. Sensor Fusion Approach for Multiple Human Motion Detection for Indoor Surveillance Use-Case. Sensors 2023, 23, 3993. https://doi.org/10.3390/s230839931424-82201424-822010.3390/s2308399337112337https://www.mdpi.com/1424-8220/23/8/3993info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:33:17Zoai:repositorium.sdum.uminho.pt:1822/85593Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:28:47.282120Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Sensor fusion approach for multiple human motion detection for indoor surveillance use-case
title Sensor fusion approach for multiple human motion detection for indoor surveillance use-case
spellingShingle Sensor fusion approach for multiple human motion detection for indoor surveillance use-case
Abbasi, Ali
Neuromorphic vision sensor
Multiple human motion detection and tracking
Multi-modal data
Sensor fusion
Indoor surveillance
Event-based data
Science & Technology
title_short Sensor fusion approach for multiple human motion detection for indoor surveillance use-case
title_full Sensor fusion approach for multiple human motion detection for indoor surveillance use-case
title_fullStr Sensor fusion approach for multiple human motion detection for indoor surveillance use-case
title_full_unstemmed Sensor fusion approach for multiple human motion detection for indoor surveillance use-case
title_sort Sensor fusion approach for multiple human motion detection for indoor surveillance use-case
author Abbasi, Ali
author_facet Abbasi, Ali
Queirós, Sandro
Costa, Nuno Miguel Cerqueira
Fonseca, Jaime C.
Borges, João
author_role author
author2 Queirós, Sandro
Costa, Nuno Miguel Cerqueira
Fonseca, Jaime C.
Borges, João
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Abbasi, Ali
Queirós, Sandro
Costa, Nuno Miguel Cerqueira
Fonseca, Jaime C.
Borges, João
dc.subject.por.fl_str_mv Neuromorphic vision sensor
Multiple human motion detection and tracking
Multi-modal data
Sensor fusion
Indoor surveillance
Event-based data
Science & Technology
topic Neuromorphic vision sensor
Multiple human motion detection and tracking
Multi-modal data
Sensor fusion
Indoor surveillance
Event-based data
Science & Technology
description Multi-human detection and tracking in indoor surveillance is a challenging task due to various factors such as occlusions, illumination changes, and complex human-human and human-object interactions. In this study, we address these challenges by exploring the benefits of a low-level sensor fusion approach that combines grayscale and neuromorphic vision sensor (NVS) data. We first generate a custom dataset using an NVS camera in an indoor environment. We then conduct a comprehensive study by experimenting with different image features and deep learning networks, followed by a multi-input fusion strategy to optimize our experiments with respect to overfitting. Our primary goal is to determine the best input feature types for multi-human motion detection using statistical analysis. We find that there is a significant difference between the input features of optimized backbones, with the best strategy depending on the amount of available data. Specifically, under a low-data regime, event-based frames seem to be the preferred input feature type, while higher data availability benefits the combined use of grayscale and optical flow features. Our results demonstrate the potential of sensor fusion and deep learning techniques for multi-human tracking in indoor surveillance, although it is acknowledged that further studies are needed to confirm our findings.
publishDate 2023
dc.date.none.fl_str_mv 2023-04-14
2023-04-14T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/85593
url https://hdl.handle.net/1822/85593
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Abbasi, A.; Queirós, S.; da Costa, N.M.C.; Fonseca, J.C.; Borges, J. Sensor Fusion Approach for Multiple Human Motion Detection for Indoor Surveillance Use-Case. Sensors 2023, 23, 3993. https://doi.org/10.3390/s23083993
1424-8220
1424-8220
10.3390/s23083993
37112337
https://www.mdpi.com/1424-8220/23/8/3993
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132784423337984