A Review of Fractional Order Entropies
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/18543 |
Resumo: | Fractional calculus (FC) is the area of calculus that generalizes the operations of differentiation and integration. FC operators are non-local and capture the history of dynamical effects present in many natural and artificial phenomena. Entropy is a measure of uncertainty, diversity and randomness often adopted for characterizing complex dynamical systems. Stemming from the synergies between the two areas, this paper reviews the concept of entropy in the framework of FC. Several new entropy definitions have been proposed in recent decades, expanding the scope of applicability of this seminal tool. However, FC is not yet well disseminated in the community of entropy. Therefore, new definitions based on FC can generalize both concepts in the theoretical and applied points of view. The time to come will prove to what extend the new formulations will be useful. |
id |
RCAP_3b87f5c0a19c87b1d3b309b2e57c8b3a |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/18543 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Review of Fractional Order EntropiesFractional calculusEntropyInformation theoryFractional calculus (FC) is the area of calculus that generalizes the operations of differentiation and integration. FC operators are non-local and capture the history of dynamical effects present in many natural and artificial phenomena. Entropy is a measure of uncertainty, diversity and randomness often adopted for characterizing complex dynamical systems. Stemming from the synergies between the two areas, this paper reviews the concept of entropy in the framework of FC. Several new entropy definitions have been proposed in recent decades, expanding the scope of applicability of this seminal tool. However, FC is not yet well disseminated in the community of entropy. Therefore, new definitions based on FC can generalize both concepts in the theoretical and applied points of view. The time to come will prove to what extend the new formulations will be useful.MDPIRepositório Científico do Instituto Politécnico do PortoLopes, António M.Machado, José A. Tenreiro2021-09-24T14:35:46Z20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/18543eng10.3390/e22121374info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:10:09Zoai:recipp.ipp.pt:10400.22/18543Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:38:02.054440Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Review of Fractional Order Entropies |
title |
A Review of Fractional Order Entropies |
spellingShingle |
A Review of Fractional Order Entropies Lopes, António M. Fractional calculus Entropy Information theory |
title_short |
A Review of Fractional Order Entropies |
title_full |
A Review of Fractional Order Entropies |
title_fullStr |
A Review of Fractional Order Entropies |
title_full_unstemmed |
A Review of Fractional Order Entropies |
title_sort |
A Review of Fractional Order Entropies |
author |
Lopes, António M. |
author_facet |
Lopes, António M. Machado, José A. Tenreiro |
author_role |
author |
author2 |
Machado, José A. Tenreiro |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Lopes, António M. Machado, José A. Tenreiro |
dc.subject.por.fl_str_mv |
Fractional calculus Entropy Information theory |
topic |
Fractional calculus Entropy Information theory |
description |
Fractional calculus (FC) is the area of calculus that generalizes the operations of differentiation and integration. FC operators are non-local and capture the history of dynamical effects present in many natural and artificial phenomena. Entropy is a measure of uncertainty, diversity and randomness often adopted for characterizing complex dynamical systems. Stemming from the synergies between the two areas, this paper reviews the concept of entropy in the framework of FC. Several new entropy definitions have been proposed in recent decades, expanding the scope of applicability of this seminal tool. However, FC is not yet well disseminated in the community of entropy. Therefore, new definitions based on FC can generalize both concepts in the theoretical and applied points of view. The time to come will prove to what extend the new formulations will be useful. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 2020-01-01T00:00:00Z 2021-09-24T14:35:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/18543 |
url |
http://hdl.handle.net/10400.22/18543 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.3390/e22121374 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131470035419136 |