Multi-country Analysis of Unemployment Rate Nowcasting During Covid-19 With Search Query Data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/152101 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Risk Analysis and Management |
id |
RCAP_3b8b3440835937d04f3c4e3a1e6c2568 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/152101 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Multi-country Analysis of Unemployment Rate Nowcasting During Covid-19 With Search Query DataEconomic forecastingNowcastingUnemploymentGoogle TrendsDissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Risk Analysis and ManagementNowcasting methods aim to predict the present and the very near future and past to circumvent data lag. As internet usage becomes ubiquitous, more and more individuals use internet search engines as decision-making tools; consequently, search query data may be good proxies for individual behavior, and thus a useful nowcasting predictor variable for many macroeconomic indicators. This study examines the potential of using Google Trends data to nowcast unemployment rate during the years of the Covid-19 pandemic across sixteen countries by comparing the performance of four alternative models with Google Trends data against a base autoregressive model, considering two modelling training windows, one limited to pre-Covid data and the other including 2020 data. The results show that search query data lack robustness and have varying predictive power, with the inclusion of 2020 data into the training set providing a significant improvement of out-of-sample forecasting accuracy. These findings indicate that search query data may have good predictive power in some scenarios, but may not be robust enough for real-life applications.Damásio, Bruno Miguel PintoPinheiro, Flávio Luís PortasRUNCampos, Arthur Henrique Fernandes2023-04-24T15:58:15Z2023-04-102023-04-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/152101TID:203268601enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:34:28Zoai:run.unl.pt:10362/152101Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:54:47.949881Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Multi-country Analysis of Unemployment Rate Nowcasting During Covid-19 With Search Query Data |
title |
Multi-country Analysis of Unemployment Rate Nowcasting During Covid-19 With Search Query Data |
spellingShingle |
Multi-country Analysis of Unemployment Rate Nowcasting During Covid-19 With Search Query Data Campos, Arthur Henrique Fernandes Economic forecasting Nowcasting Unemployment Google Trends |
title_short |
Multi-country Analysis of Unemployment Rate Nowcasting During Covid-19 With Search Query Data |
title_full |
Multi-country Analysis of Unemployment Rate Nowcasting During Covid-19 With Search Query Data |
title_fullStr |
Multi-country Analysis of Unemployment Rate Nowcasting During Covid-19 With Search Query Data |
title_full_unstemmed |
Multi-country Analysis of Unemployment Rate Nowcasting During Covid-19 With Search Query Data |
title_sort |
Multi-country Analysis of Unemployment Rate Nowcasting During Covid-19 With Search Query Data |
author |
Campos, Arthur Henrique Fernandes |
author_facet |
Campos, Arthur Henrique Fernandes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Damásio, Bruno Miguel Pinto Pinheiro, Flávio Luís Portas RUN |
dc.contributor.author.fl_str_mv |
Campos, Arthur Henrique Fernandes |
dc.subject.por.fl_str_mv |
Economic forecasting Nowcasting Unemployment Google Trends |
topic |
Economic forecasting Nowcasting Unemployment Google Trends |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Risk Analysis and Management |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04-24T15:58:15Z 2023-04-10 2023-04-10T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/152101 TID:203268601 |
url |
http://hdl.handle.net/10362/152101 |
identifier_str_mv |
TID:203268601 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138136529305600 |