Multi-country Analysis of Unemployment Rate Nowcasting During Covid-19 With Search Query Data

Detalhes bibliográficos
Autor(a) principal: Campos, Arthur Henrique Fernandes
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/152101
Resumo: Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Risk Analysis and Management
id RCAP_3b8b3440835937d04f3c4e3a1e6c2568
oai_identifier_str oai:run.unl.pt:10362/152101
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Multi-country Analysis of Unemployment Rate Nowcasting During Covid-19 With Search Query DataEconomic forecastingNowcastingUnemploymentGoogle TrendsDissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Risk Analysis and ManagementNowcasting methods aim to predict the present and the very near future and past to circumvent data lag. As internet usage becomes ubiquitous, more and more individuals use internet search engines as decision-making tools; consequently, search query data may be good proxies for individual behavior, and thus a useful nowcasting predictor variable for many macroeconomic indicators. This study examines the potential of using Google Trends data to nowcast unemployment rate during the years of the Covid-19 pandemic across sixteen countries by comparing the performance of four alternative models with Google Trends data against a base autoregressive model, considering two modelling training windows, one limited to pre-Covid data and the other including 2020 data. The results show that search query data lack robustness and have varying predictive power, with the inclusion of 2020 data into the training set providing a significant improvement of out-of-sample forecasting accuracy. These findings indicate that search query data may have good predictive power in some scenarios, but may not be robust enough for real-life applications.Damásio, Bruno Miguel PintoPinheiro, Flávio Luís PortasRUNCampos, Arthur Henrique Fernandes2023-04-24T15:58:15Z2023-04-102023-04-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/152101TID:203268601enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:34:28Zoai:run.unl.pt:10362/152101Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:54:47.949881Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Multi-country Analysis of Unemployment Rate Nowcasting During Covid-19 With Search Query Data
title Multi-country Analysis of Unemployment Rate Nowcasting During Covid-19 With Search Query Data
spellingShingle Multi-country Analysis of Unemployment Rate Nowcasting During Covid-19 With Search Query Data
Campos, Arthur Henrique Fernandes
Economic forecasting
Nowcasting
Unemployment
Google Trends
title_short Multi-country Analysis of Unemployment Rate Nowcasting During Covid-19 With Search Query Data
title_full Multi-country Analysis of Unemployment Rate Nowcasting During Covid-19 With Search Query Data
title_fullStr Multi-country Analysis of Unemployment Rate Nowcasting During Covid-19 With Search Query Data
title_full_unstemmed Multi-country Analysis of Unemployment Rate Nowcasting During Covid-19 With Search Query Data
title_sort Multi-country Analysis of Unemployment Rate Nowcasting During Covid-19 With Search Query Data
author Campos, Arthur Henrique Fernandes
author_facet Campos, Arthur Henrique Fernandes
author_role author
dc.contributor.none.fl_str_mv Damásio, Bruno Miguel Pinto
Pinheiro, Flávio Luís Portas
RUN
dc.contributor.author.fl_str_mv Campos, Arthur Henrique Fernandes
dc.subject.por.fl_str_mv Economic forecasting
Nowcasting
Unemployment
Google Trends
topic Economic forecasting
Nowcasting
Unemployment
Google Trends
description Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Risk Analysis and Management
publishDate 2023
dc.date.none.fl_str_mv 2023-04-24T15:58:15Z
2023-04-10
2023-04-10T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/152101
TID:203268601
url http://hdl.handle.net/10362/152101
identifier_str_mv TID:203268601
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138136529305600