Analysis of S&P500 using News Headlines Applying Machine Learning Algorithms
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/149741 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
id |
RCAP_3bcceb9f6d65742ee9361b3ba39386e3 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/149741 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Analysis of S&P500 using News Headlines Applying Machine Learning AlgorithmsMachine LearningS&P 500Sentiment AnalysisCorrelationVADERDissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceFinancial risk is in everyone’s life now, directly or indirectly impacting people´s daily life, empowering people on their decisions and the consequences of the same. This financial system comprises all the companies that produce and sell, making them an essential factor. This study addresses the impact people can have, by the news headlines written, on companies’ stock prices. S&P 500 is the index that will be studied in this research, compiling the biggest 500 companies in the USA and how the index can be affected by the News Articles written by humans from distinct and powerful Newspapers. Many people worldwide “play the game” of investing in stock prices, winning or losing much money. This study also tries to understand how strongly this news and the Index, previously mentioned, can be correlated. With the increased data available, it is necessary to have some computational power to help process all of this data. There it is when the machine learning methods can have a crucial involvement. For this is necessary to understand how these methods can be applied and influence the final decision of the human that always has the same question: Can stock prices be predicted? For that is necessary to understand first the correlation between news articles, one of the elements able to impact the stock prices, and the stock prices themselves. This study will focus on the correlation between News and S&P 500.Castelli, MauroRUNHerculano, Neftali Filipe Nunes2023-02-27T17:08:22Z2023-01-252023-01-25T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/149741TID:203237854enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:31:35Zoai:run.unl.pt:10362/149741Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:53:50.336533Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Analysis of S&P500 using News Headlines Applying Machine Learning Algorithms |
title |
Analysis of S&P500 using News Headlines Applying Machine Learning Algorithms |
spellingShingle |
Analysis of S&P500 using News Headlines Applying Machine Learning Algorithms Herculano, Neftali Filipe Nunes Machine Learning S&P 500 Sentiment Analysis Correlation VADER |
title_short |
Analysis of S&P500 using News Headlines Applying Machine Learning Algorithms |
title_full |
Analysis of S&P500 using News Headlines Applying Machine Learning Algorithms |
title_fullStr |
Analysis of S&P500 using News Headlines Applying Machine Learning Algorithms |
title_full_unstemmed |
Analysis of S&P500 using News Headlines Applying Machine Learning Algorithms |
title_sort |
Analysis of S&P500 using News Headlines Applying Machine Learning Algorithms |
author |
Herculano, Neftali Filipe Nunes |
author_facet |
Herculano, Neftali Filipe Nunes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Castelli, Mauro RUN |
dc.contributor.author.fl_str_mv |
Herculano, Neftali Filipe Nunes |
dc.subject.por.fl_str_mv |
Machine Learning S&P 500 Sentiment Analysis Correlation VADER |
topic |
Machine Learning S&P 500 Sentiment Analysis Correlation VADER |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02-27T17:08:22Z 2023-01-25 2023-01-25T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/149741 TID:203237854 |
url |
http://hdl.handle.net/10362/149741 |
identifier_str_mv |
TID:203237854 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138128131260416 |