Dynamics and interpretation of some integrable systems via matrix orthogonal polynomials

Detalhes bibliográficos
Autor(a) principal: Branquinho, Amílcar
Data de Publicação: 2016
Outros Autores: Foulquié Moreno, Ana, Mendes, Ana
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/43942
https://doi.org/10.1080/10652469.2016.1250082
Resumo: n this work we characterize a high-order Toda lattice in terms of a family of matrix polynomials orthogonal with respect to a complex matrix measure. In order to study the solution of this dynamical system, we give explicit expressions for the Weyl function, generalized Markov function, and we also obtain, under some conditions, a representation of the vector of linear functionals associated with this system. We show that the orthogonality is embedded in these structure and governs the high-order Toda lattice. We also present a Lax-type theorem for the point spectrum of the Jacobi operator associated with a Toda-type lattice.
id RCAP_3c144357f7313cdd07f51b0ddf96ac36
oai_identifier_str oai:estudogeral.uc.pt:10316/43942
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Dynamics and interpretation of some integrable systems via matrix orthogonal polynomialsn this work we characterize a high-order Toda lattice in terms of a family of matrix polynomials orthogonal with respect to a complex matrix measure. In order to study the solution of this dynamical system, we give explicit expressions for the Weyl function, generalized Markov function, and we also obtain, under some conditions, a representation of the vector of linear functionals associated with this system. We show that the orthogonality is embedded in these structure and governs the high-order Toda lattice. We also present a Lax-type theorem for the point spectrum of the Jacobi operator associated with a Toda-type lattice.Taylor & Francis2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/43942http://hdl.handle.net/10316/43942https://doi.org/10.1080/10652469.2016.1250082https://doi.org/10.1080/10652469.2016.1250082enghttp://dx.doi.org/10.1080/10652469.2016.1250082Branquinho, AmílcarFoulquié Moreno, AnaMendes, Anainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-06-29T10:03:12Zoai:estudogeral.uc.pt:10316/43942Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:30.382995Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Dynamics and interpretation of some integrable systems via matrix orthogonal polynomials
title Dynamics and interpretation of some integrable systems via matrix orthogonal polynomials
spellingShingle Dynamics and interpretation of some integrable systems via matrix orthogonal polynomials
Branquinho, Amílcar
title_short Dynamics and interpretation of some integrable systems via matrix orthogonal polynomials
title_full Dynamics and interpretation of some integrable systems via matrix orthogonal polynomials
title_fullStr Dynamics and interpretation of some integrable systems via matrix orthogonal polynomials
title_full_unstemmed Dynamics and interpretation of some integrable systems via matrix orthogonal polynomials
title_sort Dynamics and interpretation of some integrable systems via matrix orthogonal polynomials
author Branquinho, Amílcar
author_facet Branquinho, Amílcar
Foulquié Moreno, Ana
Mendes, Ana
author_role author
author2 Foulquié Moreno, Ana
Mendes, Ana
author2_role author
author
dc.contributor.author.fl_str_mv Branquinho, Amílcar
Foulquié Moreno, Ana
Mendes, Ana
description n this work we characterize a high-order Toda lattice in terms of a family of matrix polynomials orthogonal with respect to a complex matrix measure. In order to study the solution of this dynamical system, we give explicit expressions for the Weyl function, generalized Markov function, and we also obtain, under some conditions, a representation of the vector of linear functionals associated with this system. We show that the orthogonality is embedded in these structure and governs the high-order Toda lattice. We also present a Lax-type theorem for the point spectrum of the Jacobi operator associated with a Toda-type lattice.
publishDate 2016
dc.date.none.fl_str_mv 2016
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/43942
http://hdl.handle.net/10316/43942
https://doi.org/10.1080/10652469.2016.1250082
https://doi.org/10.1080/10652469.2016.1250082
url http://hdl.handle.net/10316/43942
https://doi.org/10.1080/10652469.2016.1250082
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://dx.doi.org/10.1080/10652469.2016.1250082
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133821624385536