Dynamics and interpretation of some integrable systems via matrix orthogonal polynomials
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/43942 https://doi.org/10.1080/10652469.2016.1250082 |
Resumo: | n this work we characterize a high-order Toda lattice in terms of a family of matrix polynomials orthogonal with respect to a complex matrix measure. In order to study the solution of this dynamical system, we give explicit expressions for the Weyl function, generalized Markov function, and we also obtain, under some conditions, a representation of the vector of linear functionals associated with this system. We show that the orthogonality is embedded in these structure and governs the high-order Toda lattice. We also present a Lax-type theorem for the point spectrum of the Jacobi operator associated with a Toda-type lattice. |
id |
RCAP_3c144357f7313cdd07f51b0ddf96ac36 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/43942 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Dynamics and interpretation of some integrable systems via matrix orthogonal polynomialsn this work we characterize a high-order Toda lattice in terms of a family of matrix polynomials orthogonal with respect to a complex matrix measure. In order to study the solution of this dynamical system, we give explicit expressions for the Weyl function, generalized Markov function, and we also obtain, under some conditions, a representation of the vector of linear functionals associated with this system. We show that the orthogonality is embedded in these structure and governs the high-order Toda lattice. We also present a Lax-type theorem for the point spectrum of the Jacobi operator associated with a Toda-type lattice.Taylor & Francis2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/43942http://hdl.handle.net/10316/43942https://doi.org/10.1080/10652469.2016.1250082https://doi.org/10.1080/10652469.2016.1250082enghttp://dx.doi.org/10.1080/10652469.2016.1250082Branquinho, AmílcarFoulquié Moreno, AnaMendes, Anainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-06-29T10:03:12Zoai:estudogeral.uc.pt:10316/43942Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:30.382995Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Dynamics and interpretation of some integrable systems via matrix orthogonal polynomials |
title |
Dynamics and interpretation of some integrable systems via matrix orthogonal polynomials |
spellingShingle |
Dynamics and interpretation of some integrable systems via matrix orthogonal polynomials Branquinho, Amílcar |
title_short |
Dynamics and interpretation of some integrable systems via matrix orthogonal polynomials |
title_full |
Dynamics and interpretation of some integrable systems via matrix orthogonal polynomials |
title_fullStr |
Dynamics and interpretation of some integrable systems via matrix orthogonal polynomials |
title_full_unstemmed |
Dynamics and interpretation of some integrable systems via matrix orthogonal polynomials |
title_sort |
Dynamics and interpretation of some integrable systems via matrix orthogonal polynomials |
author |
Branquinho, Amílcar |
author_facet |
Branquinho, Amílcar Foulquié Moreno, Ana Mendes, Ana |
author_role |
author |
author2 |
Foulquié Moreno, Ana Mendes, Ana |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Branquinho, Amílcar Foulquié Moreno, Ana Mendes, Ana |
description |
n this work we characterize a high-order Toda lattice in terms of a family of matrix polynomials orthogonal with respect to a complex matrix measure. In order to study the solution of this dynamical system, we give explicit expressions for the Weyl function, generalized Markov function, and we also obtain, under some conditions, a representation of the vector of linear functionals associated with this system. We show that the orthogonality is embedded in these structure and governs the high-order Toda lattice. We also present a Lax-type theorem for the point spectrum of the Jacobi operator associated with a Toda-type lattice. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/43942 http://hdl.handle.net/10316/43942 https://doi.org/10.1080/10652469.2016.1250082 https://doi.org/10.1080/10652469.2016.1250082 |
url |
http://hdl.handle.net/10316/43942 https://doi.org/10.1080/10652469.2016.1250082 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://dx.doi.org/10.1080/10652469.2016.1250082 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133821624385536 |