Preventing wildlife roadkill can offset mitigation investments in short-medium term

Detalhes bibliográficos
Autor(a) principal: Ascensão, Fernando
Data de Publicação: 2021
Outros Autores: Yogui, Débora R., Alves, Mario H., Alves, Amanda Carolina, Abra, Fernanda, Desbiez, Arnaud L.J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10451/59778
Resumo: Wildlife vehicle collisions (WVC) are a threat to wildlife and humans, killing millions of animals of numerous species, as well as causing significant damage to vehicles, drivers and passengers. Road fencing is a highly effective mitigation measure at reducing WVC, however its large-scale implementation requires a high investment. We questioned how long it would take for savings from avoided collisions to offset the investments in road fencing mitigation, focusing on vehicle damage costs. Using the information of a 3-year systematic roadkill monitoring of 1158 km in Mato Grosso do Sul, Brazil, we estimated the real number of casualties accounting for bias in roadkill counting. We obtained information on the material costs on cars and trucks due to WVC and, considering the road traffic volume characteristics, estimated the total material costs resulting from collisions with larger animals. Cost-benefit analyses allowed estimating the time required to amortize the investment in fencing, considering its application along the full surveyed roads or only in hotspots of mortality. We recorded over 10,000 WVC, 40% of which involved animals that can cause significant material damage to vehicles, namely the endangered lowland tapir (Tapirus terrestris, n = 267) and giant anteater (Myrmecophaga tridactyla, n = 608). The average material cost per accident was US$ 885 ± 1575 (mean ± SD). We show that investments are likely to pay off in 16–40 years for the mitigation of the full roads, and in 9–25 years for hotspots of mortality. Thus, road mitigation is a win-win solution for increasing traffic safety for humans and reduces road-related negative effects on biodiversity.
id RCAP_3c92aadf906e37d92d1fcb4163d337f9
oai_identifier_str oai:repositorio.ul.pt:10451/59778
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Preventing wildlife roadkill can offset mitigation investments in short-medium termWildlife vehicle collisions (WVC) are a threat to wildlife and humans, killing millions of animals of numerous species, as well as causing significant damage to vehicles, drivers and passengers. Road fencing is a highly effective mitigation measure at reducing WVC, however its large-scale implementation requires a high investment. We questioned how long it would take for savings from avoided collisions to offset the investments in road fencing mitigation, focusing on vehicle damage costs. Using the information of a 3-year systematic roadkill monitoring of 1158 km in Mato Grosso do Sul, Brazil, we estimated the real number of casualties accounting for bias in roadkill counting. We obtained information on the material costs on cars and trucks due to WVC and, considering the road traffic volume characteristics, estimated the total material costs resulting from collisions with larger animals. Cost-benefit analyses allowed estimating the time required to amortize the investment in fencing, considering its application along the full surveyed roads or only in hotspots of mortality. We recorded over 10,000 WVC, 40% of which involved animals that can cause significant material damage to vehicles, namely the endangered lowland tapir (Tapirus terrestris, n = 267) and giant anteater (Myrmecophaga tridactyla, n = 608). The average material cost per accident was US$ 885 ± 1575 (mean ± SD). We show that investments are likely to pay off in 16–40 years for the mitigation of the full roads, and in 9–25 years for hotspots of mortality. Thus, road mitigation is a win-win solution for increasing traffic safety for humans and reduces road-related negative effects on biodiversity.ElsevierRepositório da Universidade de LisboaAscensão, FernandoYogui, Débora R.Alves, Mario H.Alves, Amanda CarolinaAbra, FernandaDesbiez, Arnaud L.J.2023-10-16T11:34:27Z2021-012021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/59778eng10.1016/j.biocon.2020.108902info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T17:09:26Zoai:repositorio.ul.pt:10451/59778Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:09:45.610250Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Preventing wildlife roadkill can offset mitigation investments in short-medium term
title Preventing wildlife roadkill can offset mitigation investments in short-medium term
spellingShingle Preventing wildlife roadkill can offset mitigation investments in short-medium term
Ascensão, Fernando
title_short Preventing wildlife roadkill can offset mitigation investments in short-medium term
title_full Preventing wildlife roadkill can offset mitigation investments in short-medium term
title_fullStr Preventing wildlife roadkill can offset mitigation investments in short-medium term
title_full_unstemmed Preventing wildlife roadkill can offset mitigation investments in short-medium term
title_sort Preventing wildlife roadkill can offset mitigation investments in short-medium term
author Ascensão, Fernando
author_facet Ascensão, Fernando
Yogui, Débora R.
Alves, Mario H.
Alves, Amanda Carolina
Abra, Fernanda
Desbiez, Arnaud L.J.
author_role author
author2 Yogui, Débora R.
Alves, Mario H.
Alves, Amanda Carolina
Abra, Fernanda
Desbiez, Arnaud L.J.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Ascensão, Fernando
Yogui, Débora R.
Alves, Mario H.
Alves, Amanda Carolina
Abra, Fernanda
Desbiez, Arnaud L.J.
description Wildlife vehicle collisions (WVC) are a threat to wildlife and humans, killing millions of animals of numerous species, as well as causing significant damage to vehicles, drivers and passengers. Road fencing is a highly effective mitigation measure at reducing WVC, however its large-scale implementation requires a high investment. We questioned how long it would take for savings from avoided collisions to offset the investments in road fencing mitigation, focusing on vehicle damage costs. Using the information of a 3-year systematic roadkill monitoring of 1158 km in Mato Grosso do Sul, Brazil, we estimated the real number of casualties accounting for bias in roadkill counting. We obtained information on the material costs on cars and trucks due to WVC and, considering the road traffic volume characteristics, estimated the total material costs resulting from collisions with larger animals. Cost-benefit analyses allowed estimating the time required to amortize the investment in fencing, considering its application along the full surveyed roads or only in hotspots of mortality. We recorded over 10,000 WVC, 40% of which involved animals that can cause significant material damage to vehicles, namely the endangered lowland tapir (Tapirus terrestris, n = 267) and giant anteater (Myrmecophaga tridactyla, n = 608). The average material cost per accident was US$ 885 ± 1575 (mean ± SD). We show that investments are likely to pay off in 16–40 years for the mitigation of the full roads, and in 9–25 years for hotspots of mortality. Thus, road mitigation is a win-win solution for increasing traffic safety for humans and reduces road-related negative effects on biodiversity.
publishDate 2021
dc.date.none.fl_str_mv 2021-01
2021-01-01T00:00:00Z
2023-10-16T11:34:27Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/59778
url http://hdl.handle.net/10451/59778
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1016/j.biocon.2020.108902
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134652566339584