Exploring distributed computing tools through data mining tasks

Detalhes bibliográficos
Autor(a) principal: Rahman, Anishur
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/6182
Resumo: Harnessing idle PCs CPU cycles, storage space and other resources of networked computers to collaborative are mainly fixated on for all major grid computing research projects. Most of the university computers labs are occupied with the high puissant desktop PC nowadays. It is plausible to notice that most of the time machines are lying idle or wasting their computing power without utilizing in felicitous ways. However, for intricate quandaries and for analyzing astronomically immense amounts of data, sizably voluminous computational resources are required. For such quandaries, one may run the analysis algorithms in very puissant and expensive computers, which reduces the number of users that can afford such data analysis tasks. Instead of utilizing single expensive machines, distributed computing systems, offers the possibility of utilizing a set of much less expensive machines to do the same task. BOINC and Condor projects have been prosperously utilized for solving authentic scientific research works around the world at a low cost. In this work the main goal is to explore both distributed computing to implement, Condor and BOINC, and utilize their potency to harness the ideal PCs resources for the academic researchers to utilize in their research work. In this thesis, Data mining tasks have been performed in implementation of several machine learning algorithms on the distributed computing environment.
id RCAP_3cfe4d0cb1b1fa289ba61d2b7b2f0ead
oai_identifier_str oai:recipp.ipp.pt:10400.22/6182
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Exploring distributed computing tools through data mining tasksDistributed computingCondorBOINCData mining taskComputação distribuídaTarefa de mineração de dadosHarnessing idle PCs CPU cycles, storage space and other resources of networked computers to collaborative are mainly fixated on for all major grid computing research projects. Most of the university computers labs are occupied with the high puissant desktop PC nowadays. It is plausible to notice that most of the time machines are lying idle or wasting their computing power without utilizing in felicitous ways. However, for intricate quandaries and for analyzing astronomically immense amounts of data, sizably voluminous computational resources are required. For such quandaries, one may run the analysis algorithms in very puissant and expensive computers, which reduces the number of users that can afford such data analysis tasks. Instead of utilizing single expensive machines, distributed computing systems, offers the possibility of utilizing a set of much less expensive machines to do the same task. BOINC and Condor projects have been prosperously utilized for solving authentic scientific research works around the world at a low cost. In this work the main goal is to explore both distributed computing to implement, Condor and BOINC, and utilize their potency to harness the ideal PCs resources for the academic researchers to utilize in their research work. In this thesis, Data mining tasks have been performed in implementation of several machine learning algorithms on the distributed computing environment.Tirar partido dos recursos de CPU disponíveis, do espaço de armazenamento, e de outros recursos de computadores interligados em rede, de modo a que possam trabalhar conjuntamente, são características comuns a todos os grandes projetos de investigação em grid computing. Hoje em dia, a maioria dos laboratórios informáticos dos centros de investigação das instituições de ensino superior encontra-se equipada com poderosos computadores. Constata-se que, na maioria do tempo, estas máquinas não estão a utilizar o seu poder de processamento ou, pelo menos, não o utilizam na sua plenitude. No entanto, para problemas complexos e para a análise de grandes quantidades de dados, são necessários vastos recursos computacionais. Em tais situações, os algoritmos de análise requerem computadores muito potentes e caros, o que reduz o número de utilizadores que podem realizar essas tarefas de análise de dados. Em vez de se utilizarem máquinas individuais dispendiosas, os sistemas de computação distribuída oferecem a possibilidade de se utilizar um conjunto de máquinas muito menos onerosas que realizam a mesma tarefa. Os projectos BOINC e Condor têm sido utilizados com sucesso em trabalhos de investigação científica, em todo o mundo, com um custo reduzido. Neste trabalho, o objetivo principal é explorar ambas as ferramentas de computação distribuída, Condor e BOINC, para que se possa aproveitar os recursos computacionais disponíveis dos computadores, utilizando-os de modo a que os investigadores possam tirar partido deles nos seus trabalhos de investigação. Nesta dissertação, são realizadas tarefas de data mining com diferentes algoritmos de aprendizagem automática, num ambiente de computação distribuída.Oliveira, Paulo JorgeRepositório Científico do Instituto Politécnico do PortoRahman, Anishur2015-06-02T08:14:51Z20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/6182TID:201819546enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:46:22Zoai:recipp.ipp.pt:10400.22/6182Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:26:46.045299Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Exploring distributed computing tools through data mining tasks
title Exploring distributed computing tools through data mining tasks
spellingShingle Exploring distributed computing tools through data mining tasks
Rahman, Anishur
Distributed computing
Condor
BOINC
Data mining task
Computação distribuída
Tarefa de mineração de dados
title_short Exploring distributed computing tools through data mining tasks
title_full Exploring distributed computing tools through data mining tasks
title_fullStr Exploring distributed computing tools through data mining tasks
title_full_unstemmed Exploring distributed computing tools through data mining tasks
title_sort Exploring distributed computing tools through data mining tasks
author Rahman, Anishur
author_facet Rahman, Anishur
author_role author
dc.contributor.none.fl_str_mv Oliveira, Paulo Jorge
Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Rahman, Anishur
dc.subject.por.fl_str_mv Distributed computing
Condor
BOINC
Data mining task
Computação distribuída
Tarefa de mineração de dados
topic Distributed computing
Condor
BOINC
Data mining task
Computação distribuída
Tarefa de mineração de dados
description Harnessing idle PCs CPU cycles, storage space and other resources of networked computers to collaborative are mainly fixated on for all major grid computing research projects. Most of the university computers labs are occupied with the high puissant desktop PC nowadays. It is plausible to notice that most of the time machines are lying idle or wasting their computing power without utilizing in felicitous ways. However, for intricate quandaries and for analyzing astronomically immense amounts of data, sizably voluminous computational resources are required. For such quandaries, one may run the analysis algorithms in very puissant and expensive computers, which reduces the number of users that can afford such data analysis tasks. Instead of utilizing single expensive machines, distributed computing systems, offers the possibility of utilizing a set of much less expensive machines to do the same task. BOINC and Condor projects have been prosperously utilized for solving authentic scientific research works around the world at a low cost. In this work the main goal is to explore both distributed computing to implement, Condor and BOINC, and utilize their potency to harness the ideal PCs resources for the academic researchers to utilize in their research work. In this thesis, Data mining tasks have been performed in implementation of several machine learning algorithms on the distributed computing environment.
publishDate 2014
dc.date.none.fl_str_mv 2014
2014-01-01T00:00:00Z
2015-06-02T08:14:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/6182
TID:201819546
url http://hdl.handle.net/10400.22/6182
identifier_str_mv TID:201819546
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131362127511552