Coherent pairs of linear functionals on the unit circle

Detalhes bibliográficos
Autor(a) principal: Branquinho, A.
Data de Publicação: 2008
Outros Autores: Moreno, A. Foulquié, Marcellán, F., Rebocho, M. N.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/4581
Resumo: In this paper we extend the concept of coherent pairs of measures from the real line to Jordan arcs and curves. We present a characterization of pairs of coherent measures on the unit circle: it is established that if ([mu]0,[mu]1) is a coherent pair of measures on the unit circle, then [mu]0 is a semi-classical measure. Moreover, we obtain that the linear functional associated with [mu]1 is a specific rational transformation of the linear functional corresponding to [mu]0. Some examples are given.
id RCAP_3d2b742d87753570ef4c5ee5207ec39c
oai_identifier_str oai:estudogeral.uc.pt:10316/4581
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Coherent pairs of linear functionals on the unit circleOrthogonal polynomialsDifferential equationsThree-term recurrence relationsMeasures on the unit circleHermitian functionalsIn this paper we extend the concept of coherent pairs of measures from the real line to Jordan arcs and curves. We present a characterization of pairs of coherent measures on the unit circle: it is established that if ([mu]0,[mu]1) is a coherent pair of measures on the unit circle, then [mu]0 is a semi-classical measure. Moreover, we obtain that the linear functional associated with [mu]1 is a specific rational transformation of the linear functional corresponding to [mu]0. Some examples are given.http://www.sciencedirect.com/science/article/B6WH7-4S2MJ0D-1/1/61050bb3811832f373ff40a48b7461d12008info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4581http://hdl.handle.net/10316/4581engJournal of Approximation Theory. 153:1 (2008) 122-137Branquinho, A.Moreno, A. FoulquiéMarcellán, F.Rebocho, M. N.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-10-15T13:33:30Zoai:estudogeral.uc.pt:10316/4581Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:46.010157Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Coherent pairs of linear functionals on the unit circle
title Coherent pairs of linear functionals on the unit circle
spellingShingle Coherent pairs of linear functionals on the unit circle
Branquinho, A.
Orthogonal polynomials
Differential equations
Three-term recurrence relations
Measures on the unit circle
Hermitian functionals
title_short Coherent pairs of linear functionals on the unit circle
title_full Coherent pairs of linear functionals on the unit circle
title_fullStr Coherent pairs of linear functionals on the unit circle
title_full_unstemmed Coherent pairs of linear functionals on the unit circle
title_sort Coherent pairs of linear functionals on the unit circle
author Branquinho, A.
author_facet Branquinho, A.
Moreno, A. Foulquié
Marcellán, F.
Rebocho, M. N.
author_role author
author2 Moreno, A. Foulquié
Marcellán, F.
Rebocho, M. N.
author2_role author
author
author
dc.contributor.author.fl_str_mv Branquinho, A.
Moreno, A. Foulquié
Marcellán, F.
Rebocho, M. N.
dc.subject.por.fl_str_mv Orthogonal polynomials
Differential equations
Three-term recurrence relations
Measures on the unit circle
Hermitian functionals
topic Orthogonal polynomials
Differential equations
Three-term recurrence relations
Measures on the unit circle
Hermitian functionals
description In this paper we extend the concept of coherent pairs of measures from the real line to Jordan arcs and curves. We present a characterization of pairs of coherent measures on the unit circle: it is established that if ([mu]0,[mu]1) is a coherent pair of measures on the unit circle, then [mu]0 is a semi-classical measure. Moreover, we obtain that the linear functional associated with [mu]1 is a specific rational transformation of the linear functional corresponding to [mu]0. Some examples are given.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/4581
http://hdl.handle.net/10316/4581
url http://hdl.handle.net/10316/4581
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Approximation Theory. 153:1 (2008) 122-137
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv aplication/PDF
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133898370711553