Coherent pairs of linear functionals on the unit circle
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/4581 |
Resumo: | In this paper we extend the concept of coherent pairs of measures from the real line to Jordan arcs and curves. We present a characterization of pairs of coherent measures on the unit circle: it is established that if ([mu]0,[mu]1) is a coherent pair of measures on the unit circle, then [mu]0 is a semi-classical measure. Moreover, we obtain that the linear functional associated with [mu]1 is a specific rational transformation of the linear functional corresponding to [mu]0. Some examples are given. |
id |
RCAP_3d2b742d87753570ef4c5ee5207ec39c |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/4581 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Coherent pairs of linear functionals on the unit circleOrthogonal polynomialsDifferential equationsThree-term recurrence relationsMeasures on the unit circleHermitian functionalsIn this paper we extend the concept of coherent pairs of measures from the real line to Jordan arcs and curves. We present a characterization of pairs of coherent measures on the unit circle: it is established that if ([mu]0,[mu]1) is a coherent pair of measures on the unit circle, then [mu]0 is a semi-classical measure. Moreover, we obtain that the linear functional associated with [mu]1 is a specific rational transformation of the linear functional corresponding to [mu]0. Some examples are given.http://www.sciencedirect.com/science/article/B6WH7-4S2MJ0D-1/1/61050bb3811832f373ff40a48b7461d12008info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4581http://hdl.handle.net/10316/4581engJournal of Approximation Theory. 153:1 (2008) 122-137Branquinho, A.Moreno, A. FoulquiéMarcellán, F.Rebocho, M. N.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-10-15T13:33:30Zoai:estudogeral.uc.pt:10316/4581Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:46.010157Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Coherent pairs of linear functionals on the unit circle |
title |
Coherent pairs of linear functionals on the unit circle |
spellingShingle |
Coherent pairs of linear functionals on the unit circle Branquinho, A. Orthogonal polynomials Differential equations Three-term recurrence relations Measures on the unit circle Hermitian functionals |
title_short |
Coherent pairs of linear functionals on the unit circle |
title_full |
Coherent pairs of linear functionals on the unit circle |
title_fullStr |
Coherent pairs of linear functionals on the unit circle |
title_full_unstemmed |
Coherent pairs of linear functionals on the unit circle |
title_sort |
Coherent pairs of linear functionals on the unit circle |
author |
Branquinho, A. |
author_facet |
Branquinho, A. Moreno, A. Foulquié Marcellán, F. Rebocho, M. N. |
author_role |
author |
author2 |
Moreno, A. Foulquié Marcellán, F. Rebocho, M. N. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Branquinho, A. Moreno, A. Foulquié Marcellán, F. Rebocho, M. N. |
dc.subject.por.fl_str_mv |
Orthogonal polynomials Differential equations Three-term recurrence relations Measures on the unit circle Hermitian functionals |
topic |
Orthogonal polynomials Differential equations Three-term recurrence relations Measures on the unit circle Hermitian functionals |
description |
In this paper we extend the concept of coherent pairs of measures from the real line to Jordan arcs and curves. We present a characterization of pairs of coherent measures on the unit circle: it is established that if ([mu]0,[mu]1) is a coherent pair of measures on the unit circle, then [mu]0 is a semi-classical measure. Moreover, we obtain that the linear functional associated with [mu]1 is a specific rational transformation of the linear functional corresponding to [mu]0. Some examples are given. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/4581 http://hdl.handle.net/10316/4581 |
url |
http://hdl.handle.net/10316/4581 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Approximation Theory. 153:1 (2008) 122-137 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
aplication/PDF |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133898370711553 |