Steady state solutions in a model of a cholesteric liquid crystal sample
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.2/10102 |
Resumo: | Motivated by recent mathematical studies of Fréedericksz transitions in twist cells and helix unwinding in cholesteric liquid crystal cells [(da Costa et al. in Eur J Appl Math 20:269–287, 2009), (da Costa et al. in Eur J Appl Math 28:243–260, 2017), (McKay in J Eng Math 87:19–28, 2014), (Millar and McKay in Mol Cryst Liq Cryst 435:277/[937]–286/[946], 2005)], we consider a model for the director configuration obtained within the framework of the Frank-Oseen theory and consisting of a nonlinear ordinary differential equation in a bounded interval with non-homogeneous mixed boundary conditions (Dirichlet at one end of the interval, Neumann at the other). We study the structure of the solution set using the depth of the sample as a bifurcation parameter. Employing phase space analysis techniques, time maps, and asymptotic methods to estimate integrals, together with appropriate numerical evidence, we obtain the corresponding novel bifurcation diagram and discuss its implications for liquid crystal display technology. Numerical simulations of the corresponding dynamic problem also provide suggestive evidence about stability of some solution branches, pointing to a promising avenue of further analytical, numerical, and experimental studies. |
id |
RCAP_3db89e659486bfc6f65312690d72917b |
---|---|
oai_identifier_str |
oai:repositorioaberto.uab.pt:10400.2/10102 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Steady state solutions in a model of a cholesteric liquid crystal sampleNon-homogeneous two-points boundary value problemsBifurcationsAsymptotic evaluation of integralsCholesteric liquid-crystal cellsFréedericksz transitionNonlinear pendulumMotivated by recent mathematical studies of Fréedericksz transitions in twist cells and helix unwinding in cholesteric liquid crystal cells [(da Costa et al. in Eur J Appl Math 20:269–287, 2009), (da Costa et al. in Eur J Appl Math 28:243–260, 2017), (McKay in J Eng Math 87:19–28, 2014), (Millar and McKay in Mol Cryst Liq Cryst 435:277/[937]–286/[946], 2005)], we consider a model for the director configuration obtained within the framework of the Frank-Oseen theory and consisting of a nonlinear ordinary differential equation in a bounded interval with non-homogeneous mixed boundary conditions (Dirichlet at one end of the interval, Neumann at the other). We study the structure of the solution set using the depth of the sample as a bifurcation parameter. Employing phase space analysis techniques, time maps, and asymptotic methods to estimate integrals, together with appropriate numerical evidence, we obtain the corresponding novel bifurcation diagram and discuss its implications for liquid crystal display technology. Numerical simulations of the corresponding dynamic problem also provide suggestive evidence about stability of some solution branches, pointing to a promising avenue of further analytical, numerical, and experimental studies.FP da Costa and JT Pinto: FCT/Portugal project CAMGSD UID/MAT/04459/2020. FP da Costa: University of Strathclyde David Anderson Research Professorship. FP da Costa: Erasmus Mundus Mobility with Asia grant EMMA ID 2601.UID/MAT/04459/2020Springer-VerlagRepositório AbertoCosta, Fernando Pestana daPinto, João TeixeiraGrinfeld, MichaelMottram, NigelXayxanadasy, Kedtysack2021-10-29T00:30:17Z2020-10-282020-10-28T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/10102engCosta, Fernando Pestana da; Pinto, João Teixeira; Grinfeld, Michael; Mottram, Nigel; Xayxanadasy, Kedtysack; Steady state solutions in a model of a cholesteric liquid crystal sample. "Afrika Matematika" [Em linha]. ISSN 1012-9405. Vol.32, (Published online: 28 October 2020), pp. 28.1012-940510.1007/s13370-020-00851-9info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-26T01:47:21Zoai:repositorioaberto.uab.pt:10400.2/10102Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:49:46.203543Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Steady state solutions in a model of a cholesteric liquid crystal sample |
title |
Steady state solutions in a model of a cholesteric liquid crystal sample |
spellingShingle |
Steady state solutions in a model of a cholesteric liquid crystal sample Costa, Fernando Pestana da Non-homogeneous two-points boundary value problems Bifurcations Asymptotic evaluation of integrals Cholesteric liquid-crystal cells Fréedericksz transition Nonlinear pendulum |
title_short |
Steady state solutions in a model of a cholesteric liquid crystal sample |
title_full |
Steady state solutions in a model of a cholesteric liquid crystal sample |
title_fullStr |
Steady state solutions in a model of a cholesteric liquid crystal sample |
title_full_unstemmed |
Steady state solutions in a model of a cholesteric liquid crystal sample |
title_sort |
Steady state solutions in a model of a cholesteric liquid crystal sample |
author |
Costa, Fernando Pestana da |
author_facet |
Costa, Fernando Pestana da Pinto, João Teixeira Grinfeld, Michael Mottram, Nigel Xayxanadasy, Kedtysack |
author_role |
author |
author2 |
Pinto, João Teixeira Grinfeld, Michael Mottram, Nigel Xayxanadasy, Kedtysack |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Repositório Aberto |
dc.contributor.author.fl_str_mv |
Costa, Fernando Pestana da Pinto, João Teixeira Grinfeld, Michael Mottram, Nigel Xayxanadasy, Kedtysack |
dc.subject.por.fl_str_mv |
Non-homogeneous two-points boundary value problems Bifurcations Asymptotic evaluation of integrals Cholesteric liquid-crystal cells Fréedericksz transition Nonlinear pendulum |
topic |
Non-homogeneous two-points boundary value problems Bifurcations Asymptotic evaluation of integrals Cholesteric liquid-crystal cells Fréedericksz transition Nonlinear pendulum |
description |
Motivated by recent mathematical studies of Fréedericksz transitions in twist cells and helix unwinding in cholesteric liquid crystal cells [(da Costa et al. in Eur J Appl Math 20:269–287, 2009), (da Costa et al. in Eur J Appl Math 28:243–260, 2017), (McKay in J Eng Math 87:19–28, 2014), (Millar and McKay in Mol Cryst Liq Cryst 435:277/[937]–286/[946], 2005)], we consider a model for the director configuration obtained within the framework of the Frank-Oseen theory and consisting of a nonlinear ordinary differential equation in a bounded interval with non-homogeneous mixed boundary conditions (Dirichlet at one end of the interval, Neumann at the other). We study the structure of the solution set using the depth of the sample as a bifurcation parameter. Employing phase space analysis techniques, time maps, and asymptotic methods to estimate integrals, together with appropriate numerical evidence, we obtain the corresponding novel bifurcation diagram and discuss its implications for liquid crystal display technology. Numerical simulations of the corresponding dynamic problem also provide suggestive evidence about stability of some solution branches, pointing to a promising avenue of further analytical, numerical, and experimental studies. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10-28 2020-10-28T00:00:00Z 2021-10-29T00:30:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.2/10102 |
url |
http://hdl.handle.net/10400.2/10102 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Costa, Fernando Pestana da; Pinto, João Teixeira; Grinfeld, Michael; Mottram, Nigel; Xayxanadasy, Kedtysack; Steady state solutions in a model of a cholesteric liquid crystal sample. "Afrika Matematika" [Em linha]. ISSN 1012-9405. Vol.32, (Published online: 28 October 2020), pp. 28. 1012-9405 10.1007/s13370-020-00851-9 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer-Verlag |
publisher.none.fl_str_mv |
Springer-Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135083614961664 |