Superconvergence of Piecewise Linear Semi-Discretizations for Parabolic Equations with Nonuniform Triangulations

Detalhes bibliográficos
Autor(a) principal: Barbeiro, S.
Data de Publicação: 2005
Outros Autores: Ferreira, J. A., Brandts, J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/7738
https://doi.org/10.1007/s00021-005-0153-y
Resumo: In this paper we study the convergence properties of semi-discrete approximations for parabolic problems defined on two dimensional polygonal domains. These approximations are constructed using a nonstandard piecewise linear finite element method based on nonuniform triangulations of the domain and considering a variational formulation with a sesquilinear form which can be no strongly coercive. In order to increase accuracy a post-process procedure is studied.
id RCAP_3e11896a7a443015af5d1359ced68ce0
oai_identifier_str oai:estudogeral.uc.pt:10316/7738
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Superconvergence of Piecewise Linear Semi-Discretizations for Parabolic Equations with Nonuniform TriangulationsIn this paper we study the convergence properties of semi-discrete approximations for parabolic problems defined on two dimensional polygonal domains. These approximations are constructed using a nonstandard piecewise linear finite element method based on nonuniform triangulations of the domain and considering a variational formulation with a sesquilinear form which can be no strongly coercive. In order to increase accuracy a post-process procedure is studied.2005info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/7738http://hdl.handle.net/10316/7738https://doi.org/10.1007/s00021-005-0153-yengJournal of Mathematical Fluid Mechanics. 7:0 (2005) S192-S214Barbeiro, S.Ferreira, J. A.Brandts, J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-25T13:06:51Zoai:estudogeral.uc.pt:10316/7738Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:44.581750Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Superconvergence of Piecewise Linear Semi-Discretizations for Parabolic Equations with Nonuniform Triangulations
title Superconvergence of Piecewise Linear Semi-Discretizations for Parabolic Equations with Nonuniform Triangulations
spellingShingle Superconvergence of Piecewise Linear Semi-Discretizations for Parabolic Equations with Nonuniform Triangulations
Barbeiro, S.
title_short Superconvergence of Piecewise Linear Semi-Discretizations for Parabolic Equations with Nonuniform Triangulations
title_full Superconvergence of Piecewise Linear Semi-Discretizations for Parabolic Equations with Nonuniform Triangulations
title_fullStr Superconvergence of Piecewise Linear Semi-Discretizations for Parabolic Equations with Nonuniform Triangulations
title_full_unstemmed Superconvergence of Piecewise Linear Semi-Discretizations for Parabolic Equations with Nonuniform Triangulations
title_sort Superconvergence of Piecewise Linear Semi-Discretizations for Parabolic Equations with Nonuniform Triangulations
author Barbeiro, S.
author_facet Barbeiro, S.
Ferreira, J. A.
Brandts, J.
author_role author
author2 Ferreira, J. A.
Brandts, J.
author2_role author
author
dc.contributor.author.fl_str_mv Barbeiro, S.
Ferreira, J. A.
Brandts, J.
description In this paper we study the convergence properties of semi-discrete approximations for parabolic problems defined on two dimensional polygonal domains. These approximations are constructed using a nonstandard piecewise linear finite element method based on nonuniform triangulations of the domain and considering a variational formulation with a sesquilinear form which can be no strongly coercive. In order to increase accuracy a post-process procedure is studied.
publishDate 2005
dc.date.none.fl_str_mv 2005
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/7738
http://hdl.handle.net/10316/7738
https://doi.org/10.1007/s00021-005-0153-y
url http://hdl.handle.net/10316/7738
https://doi.org/10.1007/s00021-005-0153-y
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Mathematical Fluid Mechanics. 7:0 (2005) S192-S214
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133897619931136