Distributed-order non-local optimal control
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/29593 |
Resumo: | Distributed-order fractional non-local operators were introduced and studied by Caputo at the end of the 20th century. They generalize fractional order derivatives/integrals in the sense that such operators are defined by a weighted integral of different orders of differentiation over a certain range. The subject of distributed-order non-local derivatives is currently under strong development due to its applications in modeling some complex real world phenomena. Fractional optimal control theory deals with the optimization of a performance index functional, subject to a fractional control system. One of the most important results in classical and fractional optimal control is the Pontryagin Maximum Principle, which gives a necessary optimality condition that every solution to the optimization problem must verify. In our work, we extend the fractional optimal control theory by considering dynamical system constraints depending on distributed-order fractional derivatives. Precisely, we prove a weak version of Pontryagin’s maximum principle and a sufficient optimality condition under appropriate convexity assumptions. |
id |
RCAP_3e521eae1c0a0114e641c35784717bc0 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/29593 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Distributed-order non-local optimal controlDistributed-order fractional calculusBasic optimal control problemPontryagin extremalsDistributed-order fractional non-local operators were introduced and studied by Caputo at the end of the 20th century. They generalize fractional order derivatives/integrals in the sense that such operators are defined by a weighted integral of different orders of differentiation over a certain range. The subject of distributed-order non-local derivatives is currently under strong development due to its applications in modeling some complex real world phenomena. Fractional optimal control theory deals with the optimization of a performance index functional, subject to a fractional control system. One of the most important results in classical and fractional optimal control is the Pontryagin Maximum Principle, which gives a necessary optimality condition that every solution to the optimization problem must verify. In our work, we extend the fractional optimal control theory by considering dynamical system constraints depending on distributed-order fractional derivatives. Precisely, we prove a weak version of Pontryagin’s maximum principle and a sufficient optimality condition under appropriate convexity assumptions.MDPI2020-10-26T10:47:42Z2020-12-01T00:00:00Z2020-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/29593eng2075-168010.3390/axioms9040124Ndaïrou, FaïçalTorres, Delfim F. M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:57:15Zoai:ria.ua.pt:10773/29593Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:53.421969Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Distributed-order non-local optimal control |
title |
Distributed-order non-local optimal control |
spellingShingle |
Distributed-order non-local optimal control Ndaïrou, Faïçal Distributed-order fractional calculus Basic optimal control problem Pontryagin extremals |
title_short |
Distributed-order non-local optimal control |
title_full |
Distributed-order non-local optimal control |
title_fullStr |
Distributed-order non-local optimal control |
title_full_unstemmed |
Distributed-order non-local optimal control |
title_sort |
Distributed-order non-local optimal control |
author |
Ndaïrou, Faïçal |
author_facet |
Ndaïrou, Faïçal Torres, Delfim F. M. |
author_role |
author |
author2 |
Torres, Delfim F. M. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Ndaïrou, Faïçal Torres, Delfim F. M. |
dc.subject.por.fl_str_mv |
Distributed-order fractional calculus Basic optimal control problem Pontryagin extremals |
topic |
Distributed-order fractional calculus Basic optimal control problem Pontryagin extremals |
description |
Distributed-order fractional non-local operators were introduced and studied by Caputo at the end of the 20th century. They generalize fractional order derivatives/integrals in the sense that such operators are defined by a weighted integral of different orders of differentiation over a certain range. The subject of distributed-order non-local derivatives is currently under strong development due to its applications in modeling some complex real world phenomena. Fractional optimal control theory deals with the optimization of a performance index functional, subject to a fractional control system. One of the most important results in classical and fractional optimal control is the Pontryagin Maximum Principle, which gives a necessary optimality condition that every solution to the optimization problem must verify. In our work, we extend the fractional optimal control theory by considering dynamical system constraints depending on distributed-order fractional derivatives. Precisely, we prove a weak version of Pontryagin’s maximum principle and a sufficient optimality condition under appropriate convexity assumptions. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10-26T10:47:42Z 2020-12-01T00:00:00Z 2020-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/29593 |
url |
http://hdl.handle.net/10773/29593 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2075-1680 10.3390/axioms9040124 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137674600120320 |