Distributed-order non-local optimal control

Detalhes bibliográficos
Autor(a) principal: Ndaïrou, Faïçal
Data de Publicação: 2020
Outros Autores: Torres, Delfim F. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/29593
Resumo: Distributed-order fractional non-local operators were introduced and studied by Caputo at the end of the 20th century. They generalize fractional order derivatives/integrals in the sense that such operators are defined by a weighted integral of different orders of differentiation over a certain range. The subject of distributed-order non-local derivatives is currently under strong development due to its applications in modeling some complex real world phenomena. Fractional optimal control theory deals with the optimization of a performance index functional, subject to a fractional control system. One of the most important results in classical and fractional optimal control is the Pontryagin Maximum Principle, which gives a necessary optimality condition that every solution to the optimization problem must verify. In our work, we extend the fractional optimal control theory by considering dynamical system constraints depending on distributed-order fractional derivatives. Precisely, we prove a weak version of Pontryagin’s maximum principle and a sufficient optimality condition under appropriate convexity assumptions.
id RCAP_3e521eae1c0a0114e641c35784717bc0
oai_identifier_str oai:ria.ua.pt:10773/29593
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Distributed-order non-local optimal controlDistributed-order fractional calculusBasic optimal control problemPontryagin extremalsDistributed-order fractional non-local operators were introduced and studied by Caputo at the end of the 20th century. They generalize fractional order derivatives/integrals in the sense that such operators are defined by a weighted integral of different orders of differentiation over a certain range. The subject of distributed-order non-local derivatives is currently under strong development due to its applications in modeling some complex real world phenomena. Fractional optimal control theory deals with the optimization of a performance index functional, subject to a fractional control system. One of the most important results in classical and fractional optimal control is the Pontryagin Maximum Principle, which gives a necessary optimality condition that every solution to the optimization problem must verify. In our work, we extend the fractional optimal control theory by considering dynamical system constraints depending on distributed-order fractional derivatives. Precisely, we prove a weak version of Pontryagin’s maximum principle and a sufficient optimality condition under appropriate convexity assumptions.MDPI2020-10-26T10:47:42Z2020-12-01T00:00:00Z2020-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/29593eng2075-168010.3390/axioms9040124Ndaïrou, FaïçalTorres, Delfim F. M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:57:15Zoai:ria.ua.pt:10773/29593Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:53.421969Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Distributed-order non-local optimal control
title Distributed-order non-local optimal control
spellingShingle Distributed-order non-local optimal control
Ndaïrou, Faïçal
Distributed-order fractional calculus
Basic optimal control problem
Pontryagin extremals
title_short Distributed-order non-local optimal control
title_full Distributed-order non-local optimal control
title_fullStr Distributed-order non-local optimal control
title_full_unstemmed Distributed-order non-local optimal control
title_sort Distributed-order non-local optimal control
author Ndaïrou, Faïçal
author_facet Ndaïrou, Faïçal
Torres, Delfim F. M.
author_role author
author2 Torres, Delfim F. M.
author2_role author
dc.contributor.author.fl_str_mv Ndaïrou, Faïçal
Torres, Delfim F. M.
dc.subject.por.fl_str_mv Distributed-order fractional calculus
Basic optimal control problem
Pontryagin extremals
topic Distributed-order fractional calculus
Basic optimal control problem
Pontryagin extremals
description Distributed-order fractional non-local operators were introduced and studied by Caputo at the end of the 20th century. They generalize fractional order derivatives/integrals in the sense that such operators are defined by a weighted integral of different orders of differentiation over a certain range. The subject of distributed-order non-local derivatives is currently under strong development due to its applications in modeling some complex real world phenomena. Fractional optimal control theory deals with the optimization of a performance index functional, subject to a fractional control system. One of the most important results in classical and fractional optimal control is the Pontryagin Maximum Principle, which gives a necessary optimality condition that every solution to the optimization problem must verify. In our work, we extend the fractional optimal control theory by considering dynamical system constraints depending on distributed-order fractional derivatives. Precisely, we prove a weak version of Pontryagin’s maximum principle and a sufficient optimality condition under appropriate convexity assumptions.
publishDate 2020
dc.date.none.fl_str_mv 2020-10-26T10:47:42Z
2020-12-01T00:00:00Z
2020-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/29593
url http://hdl.handle.net/10773/29593
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2075-1680
10.3390/axioms9040124
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137674600120320