Toxicity in Evolving Twitter Topics - Employing a novel Dynamic Topic volution Model (DyTEM) onTwitter data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/159459 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science |
id |
RCAP_3e765fc62dbe05cc19ca60c803afe03a |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/159459 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Toxicity in Evolving Twitter Topics - Employing a novel Dynamic Topic volution Model (DyTEM) onTwitter dataTwitter ResearchTopic ModellingTopic EvolutionDiscourse ToxicityDynamic Topic ModellingSDG 16 - Peace, justice and strong institutionsDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da InformaçãoDissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceThis thesis presents an extensive investigation into the evolution of topics and their association with speech toxicity on Twitter, based on a large corpus of tweets, providing crucial insights for monitoring online discourse and potentially informing interventions to combat toxic behavior in digital communities. A Dynamic Topic Evolution Model (DyTEM) is introduced, constructed by combining static Topic Modelling techniques and sentence embeddings through the state-of-the-art sentence transformer, sBERT. The DyTEM, tested and validated on a substantial sample of tweets, is represented as a directed graph, encapsulating the inherent dynamism of Twitter discussions. For validating the consistency of DyTEM and providing guidance for hyperparameter selection, a novel, hashtag-based validation method is proposed. The analysis identifies and scrutinizes five distinct Topic Transition Types: Topic Stagnation, Topic Merge, Topic Split, Topic Disappearance, and Topic Emergence. A speech toxicity classification model is employed to delve into the toxicity dynamics within topic evolution. A standout finding of this study is the positive correlation between topic popularity and its toxicity, implying that trending or viral topics tend to contain more inflammatory speech. This insight, along with the methodologies introduced in this study, contributes significantly to the broader understanding of digital discourse dynamics and could guide future strategies aimed at fostering healthier and more constructive online spaces.Pinheiro, Flávio Luís PortasRUNGeller, Marcel2023-11-02T14:22:48Z2023-10-232023-10-23T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/159459TID:203377540enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:41:51Zoai:run.unl.pt:10362/159459Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:57:33.072232Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Toxicity in Evolving Twitter Topics - Employing a novel Dynamic Topic volution Model (DyTEM) onTwitter data |
title |
Toxicity in Evolving Twitter Topics - Employing a novel Dynamic Topic volution Model (DyTEM) onTwitter data |
spellingShingle |
Toxicity in Evolving Twitter Topics - Employing a novel Dynamic Topic volution Model (DyTEM) onTwitter data Geller, Marcel Twitter Research Topic Modelling Topic Evolution Discourse Toxicity Dynamic Topic Modelling SDG 16 - Peace, justice and strong institutions Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
title_short |
Toxicity in Evolving Twitter Topics - Employing a novel Dynamic Topic volution Model (DyTEM) onTwitter data |
title_full |
Toxicity in Evolving Twitter Topics - Employing a novel Dynamic Topic volution Model (DyTEM) onTwitter data |
title_fullStr |
Toxicity in Evolving Twitter Topics - Employing a novel Dynamic Topic volution Model (DyTEM) onTwitter data |
title_full_unstemmed |
Toxicity in Evolving Twitter Topics - Employing a novel Dynamic Topic volution Model (DyTEM) onTwitter data |
title_sort |
Toxicity in Evolving Twitter Topics - Employing a novel Dynamic Topic volution Model (DyTEM) onTwitter data |
author |
Geller, Marcel |
author_facet |
Geller, Marcel |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pinheiro, Flávio Luís Portas RUN |
dc.contributor.author.fl_str_mv |
Geller, Marcel |
dc.subject.por.fl_str_mv |
Twitter Research Topic Modelling Topic Evolution Discourse Toxicity Dynamic Topic Modelling SDG 16 - Peace, justice and strong institutions Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
topic |
Twitter Research Topic Modelling Topic Evolution Discourse Toxicity Dynamic Topic Modelling SDG 16 - Peace, justice and strong institutions Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-02T14:22:48Z 2023-10-23 2023-10-23T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/159459 TID:203377540 |
url |
http://hdl.handle.net/10362/159459 |
identifier_str_mv |
TID:203377540 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138158032453632 |