Stock returns and Google Search volume data – an analysis on the Portuguese and American market

Detalhes bibliográficos
Autor(a) principal: Streicher, Annette Rachel
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/70650
Resumo: This paper examines the forecasting power of Google Search Volume Data on market returns in the light of Behavioral Finance. The research is twofold: we investigate the ability of investor attention as well as investor sentiment to predict future returns. We consider weekly time series data from 2008 to 2018 for two American market indices and the Portuguese market. Investor attention is captured by search volume of the index’s names, i.e. DJIA, S&P500 and PSI20. Investor sentiment is simulated robustly by constructing two modified sentiment indices. We apply VAR models and Granger Causality and show that our proxies for investor attention do not provide significant forecasting information opposite to previous research. Similarly, investor sentiment indices constructed with English searched terms cannot predict market returns. However, both investor sentiment indices constructed with Portuguese words reveal significant precedence.
id RCAP_3e89d41475c30b3cd69d2dac7bdd8580
oai_identifier_str oai:run.unl.pt:10362/70650
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Stock returns and Google Search volume data – an analysis on the Portuguese and American marketInvestor attentionInvestor sentimentForecasting returnsGoogle SVIDomínio/Área Científica::Ciências Sociais::Economia e GestãoThis paper examines the forecasting power of Google Search Volume Data on market returns in the light of Behavioral Finance. The research is twofold: we investigate the ability of investor attention as well as investor sentiment to predict future returns. We consider weekly time series data from 2008 to 2018 for two American market indices and the Portuguese market. Investor attention is captured by search volume of the index’s names, i.e. DJIA, S&P500 and PSI20. Investor sentiment is simulated robustly by constructing two modified sentiment indices. We apply VAR models and Granger Causality and show that our proxies for investor attention do not provide significant forecasting information opposite to previous research. Similarly, investor sentiment indices constructed with English searched terms cannot predict market returns. However, both investor sentiment indices constructed with Portuguese words reveal significant precedence.Couts, AlexanderRUNStreicher, Annette Rachel2019-05-24T09:44:10Z2019-01-142019-01-14T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/70650TID:202226603enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:33:29Zoai:run.unl.pt:10362/70650Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:35:08.538166Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Stock returns and Google Search volume data – an analysis on the Portuguese and American market
title Stock returns and Google Search volume data – an analysis on the Portuguese and American market
spellingShingle Stock returns and Google Search volume data – an analysis on the Portuguese and American market
Streicher, Annette Rachel
Investor attention
Investor sentiment
Forecasting returns
Google SVI
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Stock returns and Google Search volume data – an analysis on the Portuguese and American market
title_full Stock returns and Google Search volume data – an analysis on the Portuguese and American market
title_fullStr Stock returns and Google Search volume data – an analysis on the Portuguese and American market
title_full_unstemmed Stock returns and Google Search volume data – an analysis on the Portuguese and American market
title_sort Stock returns and Google Search volume data – an analysis on the Portuguese and American market
author Streicher, Annette Rachel
author_facet Streicher, Annette Rachel
author_role author
dc.contributor.none.fl_str_mv Couts, Alexander
RUN
dc.contributor.author.fl_str_mv Streicher, Annette Rachel
dc.subject.por.fl_str_mv Investor attention
Investor sentiment
Forecasting returns
Google SVI
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Investor attention
Investor sentiment
Forecasting returns
Google SVI
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description This paper examines the forecasting power of Google Search Volume Data on market returns in the light of Behavioral Finance. The research is twofold: we investigate the ability of investor attention as well as investor sentiment to predict future returns. We consider weekly time series data from 2008 to 2018 for two American market indices and the Portuguese market. Investor attention is captured by search volume of the index’s names, i.e. DJIA, S&P500 and PSI20. Investor sentiment is simulated robustly by constructing two modified sentiment indices. We apply VAR models and Granger Causality and show that our proxies for investor attention do not provide significant forecasting information opposite to previous research. Similarly, investor sentiment indices constructed with English searched terms cannot predict market returns. However, both investor sentiment indices constructed with Portuguese words reveal significant precedence.
publishDate 2019
dc.date.none.fl_str_mv 2019-05-24T09:44:10Z
2019-01-14
2019-01-14T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/70650
TID:202226603
url http://hdl.handle.net/10362/70650
identifier_str_mv TID:202226603
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137972580253696