Stock returns and Google Search volume data – an analysis on the Portuguese and American market
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/70650 |
Resumo: | This paper examines the forecasting power of Google Search Volume Data on market returns in the light of Behavioral Finance. The research is twofold: we investigate the ability of investor attention as well as investor sentiment to predict future returns. We consider weekly time series data from 2008 to 2018 for two American market indices and the Portuguese market. Investor attention is captured by search volume of the index’s names, i.e. DJIA, S&P500 and PSI20. Investor sentiment is simulated robustly by constructing two modified sentiment indices. We apply VAR models and Granger Causality and show that our proxies for investor attention do not provide significant forecasting information opposite to previous research. Similarly, investor sentiment indices constructed with English searched terms cannot predict market returns. However, both investor sentiment indices constructed with Portuguese words reveal significant precedence. |
id |
RCAP_3e89d41475c30b3cd69d2dac7bdd8580 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/70650 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Stock returns and Google Search volume data – an analysis on the Portuguese and American marketInvestor attentionInvestor sentimentForecasting returnsGoogle SVIDomínio/Área Científica::Ciências Sociais::Economia e GestãoThis paper examines the forecasting power of Google Search Volume Data on market returns in the light of Behavioral Finance. The research is twofold: we investigate the ability of investor attention as well as investor sentiment to predict future returns. We consider weekly time series data from 2008 to 2018 for two American market indices and the Portuguese market. Investor attention is captured by search volume of the index’s names, i.e. DJIA, S&P500 and PSI20. Investor sentiment is simulated robustly by constructing two modified sentiment indices. We apply VAR models and Granger Causality and show that our proxies for investor attention do not provide significant forecasting information opposite to previous research. Similarly, investor sentiment indices constructed with English searched terms cannot predict market returns. However, both investor sentiment indices constructed with Portuguese words reveal significant precedence.Couts, AlexanderRUNStreicher, Annette Rachel2019-05-24T09:44:10Z2019-01-142019-01-14T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/70650TID:202226603enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:33:29Zoai:run.unl.pt:10362/70650Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:35:08.538166Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Stock returns and Google Search volume data – an analysis on the Portuguese and American market |
title |
Stock returns and Google Search volume data – an analysis on the Portuguese and American market |
spellingShingle |
Stock returns and Google Search volume data – an analysis on the Portuguese and American market Streicher, Annette Rachel Investor attention Investor sentiment Forecasting returns Google SVI Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Stock returns and Google Search volume data – an analysis on the Portuguese and American market |
title_full |
Stock returns and Google Search volume data – an analysis on the Portuguese and American market |
title_fullStr |
Stock returns and Google Search volume data – an analysis on the Portuguese and American market |
title_full_unstemmed |
Stock returns and Google Search volume data – an analysis on the Portuguese and American market |
title_sort |
Stock returns and Google Search volume data – an analysis on the Portuguese and American market |
author |
Streicher, Annette Rachel |
author_facet |
Streicher, Annette Rachel |
author_role |
author |
dc.contributor.none.fl_str_mv |
Couts, Alexander RUN |
dc.contributor.author.fl_str_mv |
Streicher, Annette Rachel |
dc.subject.por.fl_str_mv |
Investor attention Investor sentiment Forecasting returns Google SVI Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Investor attention Investor sentiment Forecasting returns Google SVI Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
This paper examines the forecasting power of Google Search Volume Data on market returns in the light of Behavioral Finance. The research is twofold: we investigate the ability of investor attention as well as investor sentiment to predict future returns. We consider weekly time series data from 2008 to 2018 for two American market indices and the Portuguese market. Investor attention is captured by search volume of the index’s names, i.e. DJIA, S&P500 and PSI20. Investor sentiment is simulated robustly by constructing two modified sentiment indices. We apply VAR models and Granger Causality and show that our proxies for investor attention do not provide significant forecasting information opposite to previous research. Similarly, investor sentiment indices constructed with English searched terms cannot predict market returns. However, both investor sentiment indices constructed with Portuguese words reveal significant precedence. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-05-24T09:44:10Z 2019-01-14 2019-01-14T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/70650 TID:202226603 |
url |
http://hdl.handle.net/10362/70650 |
identifier_str_mv |
TID:202226603 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137972580253696 |