Sustainability of treatment technologies for industrial biowastes effluents
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/37522 |
Resumo: | Despite the huge efforts to develop efficient technologies for the treatment of recalcitrant biowastes and other emerging pollutants, selecting the most sustainable method among the possible alternatives is still a formidable task. This is mainly because of the integration of technical, economic, environmental, and social criteria in decision-making process. Traditionally, various multi-criteria decision-making approaches have been adopted to integrate innumerable criteria for environmental applications. In this study, we have examined the fuzzy-Delphi approach to evaluate seventeen parameters for integrating technical, economic, environmental and social criteria in order to rank the nine treatment technologies divided in two categories (physico-chemical and biological processes). The results of this study indicated that although efficiency of treatment methods is the most important criterion, but contribution of other sustainability criteria should also be considered because they are of high importance for the selection of sustainable wastewater treatment methods. As per our proposed framework on membrane technologies (among the many other physico-chemical methods) and anaerobic sludge blanket technology (among the biological treatment methods) are the most promising approaches for the treatment of highly polluted emerging industrial pollutants. The findings of this study are fully supported by the consensus achieved by a group of fifty experts from nineteen different countries. Opportunities for the improvement of the methods as per data generated are discussed. |
id |
RCAP_3eed37f25f5c6997b7ee882c4bedbc5e |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/37522 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Sustainability of treatment technologies for industrial biowastes effluentsSustainabilityFuzzy-Delphi methodologyBiowastesPhysico-chemical methodsMembrane technologiesBiological methodsDespite the huge efforts to develop efficient technologies for the treatment of recalcitrant biowastes and other emerging pollutants, selecting the most sustainable method among the possible alternatives is still a formidable task. This is mainly because of the integration of technical, economic, environmental, and social criteria in decision-making process. Traditionally, various multi-criteria decision-making approaches have been adopted to integrate innumerable criteria for environmental applications. In this study, we have examined the fuzzy-Delphi approach to evaluate seventeen parameters for integrating technical, economic, environmental and social criteria in order to rank the nine treatment technologies divided in two categories (physico-chemical and biological processes). The results of this study indicated that although efficiency of treatment methods is the most important criterion, but contribution of other sustainability criteria should also be considered because they are of high importance for the selection of sustainable wastewater treatment methods. As per our proposed framework on membrane technologies (among the many other physico-chemical methods) and anaerobic sludge blanket technology (among the biological treatment methods) are the most promising approaches for the treatment of highly polluted emerging industrial pollutants. The findings of this study are fully supported by the consensus achieved by a group of fifty experts from nineteen different countries. Opportunities for the improvement of the methods as per data generated are discussed.Elsevier2023-05-05T09:27:32Z2019-08-15T00:00:00Z2019-08-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/37522eng1385-894710.1016/j.cej.2019.04.010Kamali, MohammadrezaCosta, Maria ElisabeteAminabhavi, Tejraj M.Capela, Isabelinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:12:32Zoai:ria.ua.pt:10773/37522Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:08:08.812886Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Sustainability of treatment technologies for industrial biowastes effluents |
title |
Sustainability of treatment technologies for industrial biowastes effluents |
spellingShingle |
Sustainability of treatment technologies for industrial biowastes effluents Kamali, Mohammadreza Sustainability Fuzzy-Delphi methodology Biowastes Physico-chemical methods Membrane technologies Biological methods |
title_short |
Sustainability of treatment technologies for industrial biowastes effluents |
title_full |
Sustainability of treatment technologies for industrial biowastes effluents |
title_fullStr |
Sustainability of treatment technologies for industrial biowastes effluents |
title_full_unstemmed |
Sustainability of treatment technologies for industrial biowastes effluents |
title_sort |
Sustainability of treatment technologies for industrial biowastes effluents |
author |
Kamali, Mohammadreza |
author_facet |
Kamali, Mohammadreza Costa, Maria Elisabete Aminabhavi, Tejraj M. Capela, Isabel |
author_role |
author |
author2 |
Costa, Maria Elisabete Aminabhavi, Tejraj M. Capela, Isabel |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Kamali, Mohammadreza Costa, Maria Elisabete Aminabhavi, Tejraj M. Capela, Isabel |
dc.subject.por.fl_str_mv |
Sustainability Fuzzy-Delphi methodology Biowastes Physico-chemical methods Membrane technologies Biological methods |
topic |
Sustainability Fuzzy-Delphi methodology Biowastes Physico-chemical methods Membrane technologies Biological methods |
description |
Despite the huge efforts to develop efficient technologies for the treatment of recalcitrant biowastes and other emerging pollutants, selecting the most sustainable method among the possible alternatives is still a formidable task. This is mainly because of the integration of technical, economic, environmental, and social criteria in decision-making process. Traditionally, various multi-criteria decision-making approaches have been adopted to integrate innumerable criteria for environmental applications. In this study, we have examined the fuzzy-Delphi approach to evaluate seventeen parameters for integrating technical, economic, environmental and social criteria in order to rank the nine treatment technologies divided in two categories (physico-chemical and biological processes). The results of this study indicated that although efficiency of treatment methods is the most important criterion, but contribution of other sustainability criteria should also be considered because they are of high importance for the selection of sustainable wastewater treatment methods. As per our proposed framework on membrane technologies (among the many other physico-chemical methods) and anaerobic sludge blanket technology (among the biological treatment methods) are the most promising approaches for the treatment of highly polluted emerging industrial pollutants. The findings of this study are fully supported by the consensus achieved by a group of fifty experts from nineteen different countries. Opportunities for the improvement of the methods as per data generated are discussed. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08-15T00:00:00Z 2019-08-15 2023-05-05T09:27:32Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/37522 |
url |
http://hdl.handle.net/10773/37522 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1385-8947 10.1016/j.cej.2019.04.010 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137735093518336 |