Detection and classification of road and objects in panoramic images on board the ATLASCAR2 using Deep Learning

Detalhes bibliográficos
Autor(a) principal: Costa, Rúben Daniel Ferreira da
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/31452
Resumo: The field of autonomous driving has been increasingly explored and the future of transport partly depends on the use of this type of vehicle. For an autonomous car to navigate on the public road, it must be able to detect everything around it, ensuring that the actions taken do not compromise the safety of any person. Within the Atlas project, this dissertation aims to create a model that allows the detection of road and objects in panoramic images, thus increasing the ATLASCAR2 field of view. In view of this need, a system was developed for the creation of panoramic images through images acquired by the cameras mounted on the car and, to make the detection of the road and other objects, deep learning was used to train the models in order to ensure great accuracy and detail in detection. This work presents the results obtained with the trained models, presenting a comparison between the use of different architectures and datasets. In addition, an evaluation of the capacity of these models was also performed in the city of Aveiro.
id RCAP_4002ea0e637c89b954015914f32c2a3e
oai_identifier_str oai:ria.ua.pt:10773/31452
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Detection and classification of road and objects in panoramic images on board the ATLASCAR2 using Deep LearningAutonomous drivingDeep learningPanoramic imagesImage segmentationRoad and object detectionThe field of autonomous driving has been increasingly explored and the future of transport partly depends on the use of this type of vehicle. For an autonomous car to navigate on the public road, it must be able to detect everything around it, ensuring that the actions taken do not compromise the safety of any person. Within the Atlas project, this dissertation aims to create a model that allows the detection of road and objects in panoramic images, thus increasing the ATLASCAR2 field of view. In view of this need, a system was developed for the creation of panoramic images through images acquired by the cameras mounted on the car and, to make the detection of the road and other objects, deep learning was used to train the models in order to ensure great accuracy and detail in detection. This work presents the results obtained with the trained models, presenting a comparison between the use of different architectures and datasets. In addition, an evaluation of the capacity of these models was also performed in the city of Aveiro.A área da condução autónoma tem sido cada vez mais explorada e o futuro dos transportes passa, em parte, pela utilização deste tipo de veículos. Para conseguir navegar na via pública, um carro autónomo deve ser capaz de detetar tudo o que o rodeia, garantindo que as ações tomadas não põem em causa a segurança de ninguém. No âmbito do projeto Atlas, esta dissertação prevê a criação de um modelo que permita a deteção de estrada e objetos em imagens panorâmicas, aumentando assim o campo de visão do ATLASCAR2. Tendo em vista esta necessidade, foi desenvolvido um sistema para a criação de imagens panorâmicas através de imagens adquiridas pelas câmaras montadas no carro, e para fazer a deteção da estrada e de outros objetos, recorreu-se a ”deep learning” para treinar os modelos, de forma a garantir grande precisão e detalhe na deteção. Neste trabalho são apresentados os resultados obtidos com os modelos treinados, apresentando uma comparação entre a utilização de diferentes arquiteturas e ”datasets”. Para além disso, também foi realizada uma avaliação da capacidade destes modelos na cidade de Aveiro.2021-06-02T10:38:40Z2020-07-23T00:00:00Z2020-07-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/31452engCosta, Rúben Daniel Ferreira dainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:00:43Zoai:ria.ua.pt:10773/31452Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:19.936389Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Detection and classification of road and objects in panoramic images on board the ATLASCAR2 using Deep Learning
title Detection and classification of road and objects in panoramic images on board the ATLASCAR2 using Deep Learning
spellingShingle Detection and classification of road and objects in panoramic images on board the ATLASCAR2 using Deep Learning
Costa, Rúben Daniel Ferreira da
Autonomous driving
Deep learning
Panoramic images
Image segmentation
Road and object detection
title_short Detection and classification of road and objects in panoramic images on board the ATLASCAR2 using Deep Learning
title_full Detection and classification of road and objects in panoramic images on board the ATLASCAR2 using Deep Learning
title_fullStr Detection and classification of road and objects in panoramic images on board the ATLASCAR2 using Deep Learning
title_full_unstemmed Detection and classification of road and objects in panoramic images on board the ATLASCAR2 using Deep Learning
title_sort Detection and classification of road and objects in panoramic images on board the ATLASCAR2 using Deep Learning
author Costa, Rúben Daniel Ferreira da
author_facet Costa, Rúben Daniel Ferreira da
author_role author
dc.contributor.author.fl_str_mv Costa, Rúben Daniel Ferreira da
dc.subject.por.fl_str_mv Autonomous driving
Deep learning
Panoramic images
Image segmentation
Road and object detection
topic Autonomous driving
Deep learning
Panoramic images
Image segmentation
Road and object detection
description The field of autonomous driving has been increasingly explored and the future of transport partly depends on the use of this type of vehicle. For an autonomous car to navigate on the public road, it must be able to detect everything around it, ensuring that the actions taken do not compromise the safety of any person. Within the Atlas project, this dissertation aims to create a model that allows the detection of road and objects in panoramic images, thus increasing the ATLASCAR2 field of view. In view of this need, a system was developed for the creation of panoramic images through images acquired by the cameras mounted on the car and, to make the detection of the road and other objects, deep learning was used to train the models in order to ensure great accuracy and detail in detection. This work presents the results obtained with the trained models, presenting a comparison between the use of different architectures and datasets. In addition, an evaluation of the capacity of these models was also performed in the city of Aveiro.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-23T00:00:00Z
2020-07-23
2021-06-02T10:38:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/31452
url http://hdl.handle.net/10773/31452
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137688486412288