Functional analysis of genetic variants associated with risk for breast cancer: 12q24, a candidate risk locus

Detalhes bibliográficos
Autor(a) principal: Silva, Joceline Janice Correia
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/10019
Resumo: Common risk alleles identified through Genome-Wide Association Studies (GWAS) explain about 14% of familial breast cancer cases. However, GWAS do not identify causative variants in the risk loci and do not contribute to the understanding of risk mechanisms. All of the risk loci functionally analysed to date are cis-regulatory, i.e. polymorphisms that modify gene expression. Therefore, we hypothesize that cis-regulation is a central mechanism in breast cancer susceptibility. Differential allelic expression (DAE) is the most robust method to identify the effect of cis-regulatory single nucleotide polymorphisms (SNPs). Our group established a whole-genome DAE map for normal breast tissue, which we integrated with the GWAS data, to identify risk loci with greater potential to be cis-regulatory. We identified 111 loci, with one of them in the 12q24 locus, containing an unpublished GWAS SNP, rs7307700, and 15 DAE SNPs. We performed in silico analysis to characterize the regulatory potential of candidate cis-regulatory SNPs (rSNPs) in breast cell lines, and in vitro analysis by electrophoretic mobility shift assay (EMSA) to explore interactions between candidate rSNPs and candidate transcription factors (TFs). Three candidate rSNPs, rs10773145, rs10846834 and rs12302714, overlapped regulatory elements and DNase I hypersensitivity sites, and were associated with the DAE observed for two transcribed SNPs (or DAE SNPs), rs7301263 and rs12581512. The candidate SNPs rs10773145 and rs10846834 were both located within known c-FOS and STAT3 binding sites, but showed small allelic differences in the ChIP-seq data. Since there was no ChIP-seq data for rs12302714, we carried EMSA analysis. Although we detected DNA-protein binding for both alleles of this SNP, no allelic differences were detected. We also analysed candidate SNPs for microRNA binding and the results suggested that a microRNA have preferentially binding to the alleles of candidate rSNP rs12302714. These results indicate that the DAE observed might not be explained by differential binding of TFs at the three candidate rSNPs and might be due to other regulatory mechanisms, that require further exploration, such as splicing and microRNAs.
id RCAP_401cf1258a2075ca9a1f3576da3d2d93
oai_identifier_str oai:sapientia.ualg.pt:10400.1/10019
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Functional analysis of genetic variants associated with risk for breast cancer: 12q24, a candidate risk locusCancro da mamaSuscetibilidadePolimorfismos de nucleóticos únicosVariantes cis-reguladorasExpressão alélica diferencialCommon risk alleles identified through Genome-Wide Association Studies (GWAS) explain about 14% of familial breast cancer cases. However, GWAS do not identify causative variants in the risk loci and do not contribute to the understanding of risk mechanisms. All of the risk loci functionally analysed to date are cis-regulatory, i.e. polymorphisms that modify gene expression. Therefore, we hypothesize that cis-regulation is a central mechanism in breast cancer susceptibility. Differential allelic expression (DAE) is the most robust method to identify the effect of cis-regulatory single nucleotide polymorphisms (SNPs). Our group established a whole-genome DAE map for normal breast tissue, which we integrated with the GWAS data, to identify risk loci with greater potential to be cis-regulatory. We identified 111 loci, with one of them in the 12q24 locus, containing an unpublished GWAS SNP, rs7307700, and 15 DAE SNPs. We performed in silico analysis to characterize the regulatory potential of candidate cis-regulatory SNPs (rSNPs) in breast cell lines, and in vitro analysis by electrophoretic mobility shift assay (EMSA) to explore interactions between candidate rSNPs and candidate transcription factors (TFs). Three candidate rSNPs, rs10773145, rs10846834 and rs12302714, overlapped regulatory elements and DNase I hypersensitivity sites, and were associated with the DAE observed for two transcribed SNPs (or DAE SNPs), rs7301263 and rs12581512. The candidate SNPs rs10773145 and rs10846834 were both located within known c-FOS and STAT3 binding sites, but showed small allelic differences in the ChIP-seq data. Since there was no ChIP-seq data for rs12302714, we carried EMSA analysis. Although we detected DNA-protein binding for both alleles of this SNP, no allelic differences were detected. We also analysed candidate SNPs for microRNA binding and the results suggested that a microRNA have preferentially binding to the alleles of candidate rSNP rs12302714. These results indicate that the DAE observed might not be explained by differential binding of TFs at the three candidate rSNPs and might be due to other regulatory mechanisms, that require further exploration, such as splicing and microRNAs.Maia, Ana TeresaSapientiaSilva, Joceline Janice Correia2017-09-25T11:28:49Z2017-03-0320162017-03-03T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.1/10019enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-11-29T10:50:36Zoai:sapientia.ualg.pt:10400.1/10019Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-11-29T10:50:36Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Functional analysis of genetic variants associated with risk for breast cancer: 12q24, a candidate risk locus
title Functional analysis of genetic variants associated with risk for breast cancer: 12q24, a candidate risk locus
spellingShingle Functional analysis of genetic variants associated with risk for breast cancer: 12q24, a candidate risk locus
Silva, Joceline Janice Correia
Cancro da mama
Suscetibilidade
Polimorfismos de nucleóticos únicos
Variantes cis-reguladoras
Expressão alélica diferencial
title_short Functional analysis of genetic variants associated with risk for breast cancer: 12q24, a candidate risk locus
title_full Functional analysis of genetic variants associated with risk for breast cancer: 12q24, a candidate risk locus
title_fullStr Functional analysis of genetic variants associated with risk for breast cancer: 12q24, a candidate risk locus
title_full_unstemmed Functional analysis of genetic variants associated with risk for breast cancer: 12q24, a candidate risk locus
title_sort Functional analysis of genetic variants associated with risk for breast cancer: 12q24, a candidate risk locus
author Silva, Joceline Janice Correia
author_facet Silva, Joceline Janice Correia
author_role author
dc.contributor.none.fl_str_mv Maia, Ana Teresa
Sapientia
dc.contributor.author.fl_str_mv Silva, Joceline Janice Correia
dc.subject.por.fl_str_mv Cancro da mama
Suscetibilidade
Polimorfismos de nucleóticos únicos
Variantes cis-reguladoras
Expressão alélica diferencial
topic Cancro da mama
Suscetibilidade
Polimorfismos de nucleóticos únicos
Variantes cis-reguladoras
Expressão alélica diferencial
description Common risk alleles identified through Genome-Wide Association Studies (GWAS) explain about 14% of familial breast cancer cases. However, GWAS do not identify causative variants in the risk loci and do not contribute to the understanding of risk mechanisms. All of the risk loci functionally analysed to date are cis-regulatory, i.e. polymorphisms that modify gene expression. Therefore, we hypothesize that cis-regulation is a central mechanism in breast cancer susceptibility. Differential allelic expression (DAE) is the most robust method to identify the effect of cis-regulatory single nucleotide polymorphisms (SNPs). Our group established a whole-genome DAE map for normal breast tissue, which we integrated with the GWAS data, to identify risk loci with greater potential to be cis-regulatory. We identified 111 loci, with one of them in the 12q24 locus, containing an unpublished GWAS SNP, rs7307700, and 15 DAE SNPs. We performed in silico analysis to characterize the regulatory potential of candidate cis-regulatory SNPs (rSNPs) in breast cell lines, and in vitro analysis by electrophoretic mobility shift assay (EMSA) to explore interactions between candidate rSNPs and candidate transcription factors (TFs). Three candidate rSNPs, rs10773145, rs10846834 and rs12302714, overlapped regulatory elements and DNase I hypersensitivity sites, and were associated with the DAE observed for two transcribed SNPs (or DAE SNPs), rs7301263 and rs12581512. The candidate SNPs rs10773145 and rs10846834 were both located within known c-FOS and STAT3 binding sites, but showed small allelic differences in the ChIP-seq data. Since there was no ChIP-seq data for rs12302714, we carried EMSA analysis. Although we detected DNA-protein binding for both alleles of this SNP, no allelic differences were detected. We also analysed candidate SNPs for microRNA binding and the results suggested that a microRNA have preferentially binding to the alleles of candidate rSNP rs12302714. These results indicate that the DAE observed might not be explained by differential binding of TFs at the three candidate rSNPs and might be due to other regulatory mechanisms, that require further exploration, such as splicing and microRNAs.
publishDate 2016
dc.date.none.fl_str_mv 2016
2017-09-25T11:28:49Z
2017-03-03
2017-03-03T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/10019
url http://hdl.handle.net/10400.1/10019
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817549835153178624