Proof theory for hybrid(ised) logics

Detalhes bibliográficos
Autor(a) principal: Renato Jorge Neves
Data de Publicação: 2016
Outros Autores: Alexandre Castro Madeira, Martins,MA, Luís Soares Barbosa
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/6304
http://dx.doi.org/10.1016/j.scico.2016.03.001
Resumo: Hybridisation is a systematic process along which the characteristic features of hybrid logic, both at the syntactic and the semantic levels, are developed on top of an arbitrary logic framed as an institution. In a series of papers this process has been detailed and taken as a basis for a specification methodology for reconfigurable systems. The present paper extends this work by showing how a proof calculus (in both a Hilbert and a tableau based format) for the hybridised version of a logic can be systematically generated from a proof calculus for the latter. Such developments provide the basis for a complete proof theory for hybrid(ised) logics, and thus pave the way to the development of (dedicated) proof support.
id RCAP_414459177c86d40042350fee4e2f2437
oai_identifier_str oai:repositorio.inesctec.pt:123456789/6304
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Proof theory for hybrid(ised) logicsHybridisation is a systematic process along which the characteristic features of hybrid logic, both at the syntactic and the semantic levels, are developed on top of an arbitrary logic framed as an institution. In a series of papers this process has been detailed and taken as a basis for a specification methodology for reconfigurable systems. The present paper extends this work by showing how a proof calculus (in both a Hilbert and a tableau based format) for the hybridised version of a logic can be systematically generated from a proof calculus for the latter. Such developments provide the basis for a complete proof theory for hybrid(ised) logics, and thus pave the way to the development of (dedicated) proof support.2018-01-16T11:01:24Z2016-01-01T00:00:00Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/6304http://dx.doi.org/10.1016/j.scico.2016.03.001engRenato Jorge NevesAlexandre Castro MadeiraMartins,MALuís Soares Barbosainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:12Zoai:repositorio.inesctec.pt:123456789/6304Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:52:49.175006Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Proof theory for hybrid(ised) logics
title Proof theory for hybrid(ised) logics
spellingShingle Proof theory for hybrid(ised) logics
Renato Jorge Neves
title_short Proof theory for hybrid(ised) logics
title_full Proof theory for hybrid(ised) logics
title_fullStr Proof theory for hybrid(ised) logics
title_full_unstemmed Proof theory for hybrid(ised) logics
title_sort Proof theory for hybrid(ised) logics
author Renato Jorge Neves
author_facet Renato Jorge Neves
Alexandre Castro Madeira
Martins,MA
Luís Soares Barbosa
author_role author
author2 Alexandre Castro Madeira
Martins,MA
Luís Soares Barbosa
author2_role author
author
author
dc.contributor.author.fl_str_mv Renato Jorge Neves
Alexandre Castro Madeira
Martins,MA
Luís Soares Barbosa
description Hybridisation is a systematic process along which the characteristic features of hybrid logic, both at the syntactic and the semantic levels, are developed on top of an arbitrary logic framed as an institution. In a series of papers this process has been detailed and taken as a basis for a specification methodology for reconfigurable systems. The present paper extends this work by showing how a proof calculus (in both a Hilbert and a tableau based format) for the hybridised version of a logic can be systematically generated from a proof calculus for the latter. Such developments provide the basis for a complete proof theory for hybrid(ised) logics, and thus pave the way to the development of (dedicated) proof support.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01T00:00:00Z
2016
2018-01-16T11:01:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/6304
http://dx.doi.org/10.1016/j.scico.2016.03.001
url http://repositorio.inesctec.pt/handle/123456789/6304
http://dx.doi.org/10.1016/j.scico.2016.03.001
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131603427917824